Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi O là giao điểm của hai đường chéo AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (α) đi qua O, song song với AB và SC. Thiết diện đó là hình gì?
Hình biểu diễn của một hình H trong không gian là hình chiếu song song của hình H lên một mặt phẳng nào đó theo một phương chiếu nàođó hoặc hình đồng dạng với hình chiếu đó
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P theo thứ tự à trung điểm của các đoạn thẳngSA, BC, CD. Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP)
Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn nửa đường thẳng Ax, By, Cz, Dt ở cùng phía đối với mặt phẳng (ABCD), song song với nhau và không nằm trong mặt phẳng (ABCD). Một mặt phẳng (β) lần lượt cắt Ax, By, Cz và Dt tại A', B', C' và D'
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và AC (h.2.76), E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:
Cho hình lăng trụ tam giác ABC.A'B'C' , Gọi I, J lần lượt là trọng tâm của tam giác ABC và A'B'C' (h.2.77). Thiết diện tạo bởi mặt phẳng (AIJ) với hình lăng trụ đã cho là
Cho hình bình hành ABCD. Gọi Bx, Cy, Dz là các nửa đường thẳng song song với nhau lần lượt đi qua B, C, D và nằm về một phía của mặt phẳng (ABCD) đồng thời không nằm trong mặt phẳng (ABCD). Một mặt phẳng đi qua A và cắt Bx, Cy, Dz lần lượt tại B', C', D' với BB'=2, DD'=4. Khi đó CC' bằng:
Với giả thiết của bài tập 11, gọi N, P, Q lần lượt là giao của mặt phẳng (alpha ) với các đường thẳng CD, DS, SA. Tập hợp các giao điểm I của hai đường thẳng MQ và NP là: