Giải bài 1 trang 77 sách giáo khoa hình học lớp 11

Cho hai hình thang ABCD và ABEF có chung đáy lớn AB và không cùng ằm trong một mặt phẳng.

Bài 1. Cho hai hình thang \(ABCD\) và \(ABEF\) có chung đáy lớn \(AB\) và không cùng nằm trong một mặt phẳng.

a) Tìm giao tuyến của các mặt phắng sau: \((AEC)\) và \((BFD)\), \((BCE)\) và \((ADF)\)

b) Lấy \(M\) là điểm thuộc \(DF\). Tìm giao điểm của đường thẳng \(AM\) với mặt phẳng \((BCE)\)

c) Chứng minh hai đường thẳng \(AC\) và \(BF\) không cắt nhau

Lời giải

a) Trong \((ABCD)\) : Gọi \(I=AC ∩ BD \), Trong \(( ABEF)\): Gọi \(J=AE ∩ BF \)

\(\Rightarrow (ACE) ∩ (BDF) = IJ\).

Tương tự \((BCE) ∩ ( ADF) = GH\)

b) Trong \((AGH)\): Gọi \(N=AM ∩ GH\), \(N  \in AM\) và \(N \in GH\subset (BCE)\)

Do đó: \(N=AM\cap(BCE)\)

c) Chứng minh bằng phương pháp phản chứng.

Giả sử \(AC\) và \(BE\) cùng nằm trong một mặt phẳng, lập luận dẫn tới \((ABCD) ≡ (ABEF)\) hay chúng cùng nằm trong một mặt phẳng (trái với giả thiết)

Do đó: \(AC\) và \(BF\) không cắt nhau.

                                                                                                       

Các bài học liên quan
Bài 4 trang 78 sách giáo khoa hình học lớp 11
Bài 5 trang 79 sách giáo khoa hình học 11
Bài 6 trang 79 sách giáo khoa hình học 11

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật