Giải bài 3 trang 71 sách giáo khoa hình học lớp 11
Cho hình hộp ABCD.A'B'C'D' a) Chứng minh rằng hai mặt phẳng (BDA') và (B'D'C) song song với nhau
- Bài học cùng chủ đề:
- Bài 4 trang 71 sách giáo khoa hình học lớp 11
- Lý thuyết Định nghĩa tính chất của hai mặt phẳng song song
- Lý thuyết Hình lăng trụ, hình hộp và hình chóp cụt
- Ngữ pháp tiếng anh hay nhất
Bài 3. Cho hình hộp \(ABCD.A'B'C'D'\)
a) Chứng minh rằng hai mặt phẳng \((BDA')\) và \((B'D'C)\) song song với nhau
b) Chứng minh rằng đường chéo \(AC'\) đi qua trọng tâm \({G_{1},{G_{2}}}\) của hai tam giác \(BDA'\) và \(B'D'C\)
c) Chứng minh \({G_{1},{G_{2}}^{}}^{}\) chia đoạn \(AC'\) thành ba phần bằng nhau
d) Gọi \(O\) và \(I\) lần lượt là tâm của các hình bình hành \(ABCD\) và \(AA'C'C\). Xác định thiết diện của mặt phẳng \((A'IO)\) với hình hộp đã cho
Lời giải:
a) Tứ giác \(BDD'B'\) và \(A'BCD\) là hình bình hành nên: \(BD // B'D'\) \(\Rightarrow BD // (B'D'C)\)
và \(BA' // CD' \Rightarrow BA' // ( B'D'C)\)
Từ đó suy ra \(( BDA') //(B'D'C)\)
b) Gọi \(O,O'\) lần lượt là tâm của hình bình hành \(ABCD,A'B'C'D'\)
Gọi \({G_{1}}^{}\), \({G_{2}}^{}\) là giao điểm của \(AC'\) với \(A'O\) và \(CO'\)
\(\Delta {G_1}OA\) đồng dạng \(\Delta {G_1}A'C'\)
\( \Rightarrow {{{G_1}O} \over {{G_1}A'}} = {{OA} \over {A'C'}} = {1 \over 2} \Rightarrow {{A{G_1}} \over {A'O}} = {2 \over 3}\)
\(\Rightarrow G_1\) là trọng tâm \(\Delta A'BD\).
Chứng minh tương tự ta có: \(G_2\) là trọng tâm \(\Delta B'D'C\).
Vậy \(AC'\) đi qua \(G_1,G_2\).
c) Chứng minh
\( \frac{A{G_{1}}^{}}{{G_{1}C}^{}}\) = \( \frac{AO}{A'C'} = \frac{1}{2}\) (vì \(\Delta G_1OA\) đồng dạng \(\Delta G_1 A'C'\))
Từ đó suy ra: \( {AG_{1} = {G_{1}{G_{2}= {G_{2}C'}^{}}^{}}^{}}^{}\)
d) \((A'IO) ≡ (AA'C'C)\) suy ra thiết diện là \(AA'C'C\)