Giải bài 3 trang 104 SGK Hình học 11
Cho hình chóp S.ABCD có đáy là hình thoi ABCD và có SA=SB=SC=SD.Gọi O là giao điểm của AC và BD. Chứng minh rằng:
- Bài học cùng chủ đề:
- Bài 4 trang 105 sgk hình học 11
- Bài 5 trang 105 sgk hình học 11
- Bài 6 trang 105 sgk hình học 11
- Ngữ pháp tiếng anh hay nhất
Bài 3. Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có \(SA=SB=SC=SD\).Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Chứng minh rằng:
a) Đường thẳng \(SO\) vuông góc với mặt phẳng \((ABCD)\);
b) Đường thẳng \( AC\) vuông góc với mặt phẳng \((SBD)\) và đường thẳng \(BD\) vuông góc với mặt phẳng \(SAC\).
Giải
a) Theo giả thiết \(SA=SC\) nên tam giác \(SAC\) cân tại \(S\)
\(O\) là giao của hai đường chéo hình bình hành nên \(O\) là trung điểm của \(AC\) và \(BD\).
Do đó \(SO\) vừa là trung tuyến đồng thời là đường cao trong tam giác \(SAC\) hay \(SO\bot AC\) (1)
Chứng minh tương tự ta được: \(SO\bot BD\) (2)
Từ (1) và (2) suy ra \(SO\bot (ABCD)\).
b) \(ABCD\) là hình thoi nên \(AC\bot BD\) (3)
Từ (1) và (3) suy ra \(AC\bot (SBD)\)
Từ (2) và (3) suy ra \(BD\bot (SAC)\)