Giải bài 4 trang 105 sgk hình học 11
Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc...
- Bài học cùng chủ đề:
- Bài 5 trang 105 sgk hình học 11
- Bài 6 trang 105 sgk hình học 11
- Bài 7 trang 105 sgk Hình học 11
- Ngữ pháp tiếng anh hay nhất
Bài 4. Cho tứ diện \(OABC\) có ba cạnh \(OA, OB, OC\) đôi một vuông góc. Gọi \(H\) là chân đường vuông góc hạ từ \(O\) tới mặt phẳng \((ABC)\). Chứng minh rằng:
a) H là trực tâm của tam giác \(ABC\);
b) \(\frac{1}{OH^{2}}=\frac{1}{OA^{2}}+\frac{1}{OB^{2}}+\frac{1}{OC^{2}}.\)
Hướng dẫn.
(h.3.32)
a) \(H\) là hình chiếu của \(O\) trên mp \((ABC)\) nên \(OH ⊥ (ABC) \Rightarrow OH ⊥ BC\). (1)
Mặt khác: \(OA ⊥ OB\), \(OA ⊥ OC\)
\(\Rightarrow OA ⊥ (OBC) \Rightarrow OA ⊥ BC\) (2)
Từ (1) và (2) suy ra \(BC ⊥ (AOH) \Rightarrow BC ⊥ AH\). Chứng minh tương tự ta được \(AB ⊥ CH \)
\(\Rightarrow H\) là trực tâm của tam giác \(ABC\).
b) Trong mặt phẳng \((ABC)\) gọi \(E = AH ∩ BC\), \(OH ⊥ (ABC)\), \(AE ⊂ (ABC) \Rightarrow OH ⊥ AE\) tại \(H\);
\(OA ⊥ (ABC), OE ⊂ (ABC) \Rightarrow OA ⊥ OE\) tức là \(OH\) là đường cao của tam giác vuông \(OAE\).
Mặt khác \(OE\) là đường cao của tam giác vuông \(OBC\)
Do đó: \(\frac{1}{OH^{2}}=\frac{1}{OA^{2}}+\frac{1}{OE^{2}} =\frac{1}{OA^{2}}+\frac{1}{OB^{2}}+\frac{1}{OC^{2}}.\)
Nhận xét: Biểu thức này là mở rộng của công thức tính đường cao thuộc cạnh huyền của tam giác vuông: \(\frac{1}{h^{2}}=\frac{1}{b^{2}}+\frac{1}{c^{2}} .\)