Giải bài 7 trang 92 sgk hình học 11

Gọi M và N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD.

Bài 7. Gọi \(M\) và \(N\) lần lượt là trung điểm của các cạnh \(AC\) và \(BD\) của tứ diện \(ABCD\). Gọi \(I\) là trung điểm của đoạn thẳng \(MN\) và \(P\) là một điểm bất kì trong không gian. Chứng minh rằng: 

a) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0};\)

b) \(\overrightarrow{PI}=\frac{1}{4}(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}).\)

Giải

(H.3.6)

a) \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IM},\)

    \(\overrightarrow{IC}+\overrightarrow{ID}=2\overrightarrow{IN}.\)

Cộng từng vế ta được :

\(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}.\)

b) \(\overrightarrow{PI}=\overrightarrow{PA}+\overrightarrow{AI},\)

    \(\overrightarrow{PI}=\overrightarrow{PB}+\overrightarrow{BI},\)

    \(\overrightarrow{PI}=\overrightarrow{PC}+\overrightarrow{CI},\)

    \(\overrightarrow{PI}=\overrightarrow{PD}+\overrightarrow{DI}.\)

Cộng từng vế ta được:

\(4\overrightarrow {PI}  = \overrightarrow {PA}  + \overrightarrow {PB}  + \overrightarrow {PC}  + \overrightarrow {PD}  + (\overrightarrow {AI}  + \overrightarrow {BI} ) + (\overrightarrow {CI}  + \overrightarrow {DI} )\)

\( \Leftrightarrow\)\({PI}=\frac{1}{4} (\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}).\)

dayhoctot.com

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 11 mới cập nhật