Giải bài 3 trang 37 sgk giải tích 11
Bài 3. Giải các phương trình sau:
- Bài học cùng chủ đề:
- Bài 4 trang 37 sgk giải tích 11
- Bài 5 trang 37 sgk giải tích 11
- Bài 6 trang 37 sgk giải tích 11
- Ngữ pháp tiếng anh hay nhất
Bài 3. Giải các phương trình sau:
a) \(si{n^2}{x \over 2} - {\rm{ }}2cos{x \over 2} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\);
b) \(8co{s^2}x{\rm{ }} + {\rm{ }}2sinx{\rm{ }} - {\rm{ }}7{\rm{ }} = {\rm{ }}0\);
c) \(2ta{n^2}x{\rm{ }} + {\rm{ }}3tanx{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\);
d) \(tanx{\rm{ }} - {\rm{ }}2cotx{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\).
Giải
a) Đặt \(t = {\rm{ }}cos{x \over 2},{\rm{ }}t \in \left[ { - 1{\rm{ }};{\rm{ }}1} \right]\) thì phương trình trở thành
\((1{\rm{ }} - {\rm{ }}{t^2}){\rm{ }} - {\rm{ }}2t{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0 \Leftrightarrow {t^{2}} + {\rm{ }}2t{\rm{ }} - 3{\rm{ }} = {\rm{ }}0\)
\( \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = - 3 \hfill \text{(loại)}\cr} \right.\)
Phương trình đã cho tương đương với
\(cos{x \over 2} = {\rm{ }}1 \Leftrightarrow {x \over 2} = {\rm{ }}k2\pi \Leftrightarrow {\rm{ }}x{\rm{ }} = {\rm{ }}4k\pi ,{\rm{ }}k \in\mathbb{Z} \).
b) Đặt \(t = sinx, t ∈ [-1 ; 1]\) thì phương trình trở thành
\(8(1{\rm{ }} - {t^2}){\rm{ }} + {\rm{ }}2t{\rm{ }} - {\rm{ }}7{\rm{ }} = {\rm{ }}0{\rm{ }} \Leftrightarrow {\rm{ }}8{t^{2}} - {\rm{ }}2t{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0\)
\( \Leftrightarrow \left[ \matrix{
t = {1 \over 2} \hfill \cr
t = - {1 \over 4} \hfill \cr} \right.\)
Phương trình đã cho tương đương :
\(sinx = {1 \over 2} \Leftrightarrow \sin x = {\pi \over 6} \Leftrightarrow \left[ \matrix{
x = {\pi \over 6} + k2\pi \hfill \cr
x = {{5\pi } \over 6} + k2\pi \hfill \cr} \right.(k \in \mathbb{Z})\)
và
\(sinx = - {1 \over 4} \Leftrightarrow \sin x = arc\sin \left( { - {1 \over 4}} \right)\)
\(\Leftrightarrow \left[ \matrix{
x = arc\sin \left( { - {1 \over 4}} \right) + k2\pi \hfill \cr
x = \pi - arc\sin \left( { - {1 \over 4}} \right) + k2\pi \hfill \cr} \right.(k \in \mathbb{Z})\)
c) Đặt \(t = tanx\) thì phương trình trở thành
\(2{t^{2}} + {\rm{ }}3t{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow \left[ \matrix{
t = - 1 \hfill \cr
t = - {1 \over 2} \hfill \cr} \right.\)
Phương trình đã cho tương đương:
\(\left[ \matrix{
\tan x = - 1 \hfill \cr
\tan x = - {1 \over 2} \hfill \cr} \right.\)
\( \Leftrightarrow \left[ \matrix{
x = - {\pi \over 4} + k\pi \hfill \cr
x = \arctan \left( { - {1 \over 2}} \right) + k\pi \hfill \cr} \right.(k \in \mathbb{Z})\)
d) Đặt \(t = tanx\) thì phương trình trở thành
\(t - {2 \over t} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow {t^{2}} + {\rm{ }}t{\rm{ }} - {\rm{ }}2{\rm{ }} = {\rm{ }}0 \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = - 2 \hfill \cr} \right.\)
Phương trình đã cho tương đương:
\(\left[ \matrix{
{\mathop{\rm tanx}\nolimits} = 1 \hfill \cr
tanx = - 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} + k\pi \hfill \cr
x = \arctan ( - 2) + k\pi \hfill \cr} \right.(k \in\mathbb{Z} )\)