Giải bài 78 trang 155 SGK Đại số 10 nâng cao
Tìm giá trị nhỏ nhất của các hàm số sau
- Bài học cùng chủ đề:
- Bài 79 trang 155 SGK Đại số 10 nâng cao
- Bài 80 trang 155 SGK Đại số 10 nâng cao
- Bài 81 trang 155 SGK Đại số 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Tìm giá trị nhỏ nhất của các hàm số sau
a) \(f(x) = |x + {1 \over x}|\)
b) \(g(x) = {{{x^2} + 2} \over {\sqrt {{x^2} + 1} }}\)
Đáp án
a) Vì với mọi x ≠ 0; x và \({1 \over x}\) cùng dấu nên:
\(f(x) = |x + {1 \over x}|\, = \,|x| + {1 \over {|x|}} \ge 2\sqrt {|x|.{1 \over {|x|}}} = 2\) với mọi x ≠ 0
Dấu “=” xảy ra khi và chỉ khi: \(|x|\, = \,{1 \over {|x|}} \Leftrightarrow \,|x|\, = 1\, \Leftrightarrow x = \pm 1\)
Vậy giá trị nhỏ nhất của f(x) là 2.
b) Với mọi x ∈ R, ta có:
\( g(x) = {{{x^2} + 1} \over {\sqrt {{x^2} + 1} }} + {1 \over {\sqrt {{x^2} + 1} }} \)
\(\Leftrightarrow \sqrt {{x^2} + 1} + {1 \over {\sqrt {{x^2} + 1} }} \ge 2\sqrt {\sqrt {{x^2} + 1} .{1 \over {\sqrt {{x^2} + 1} }}}=2\) (theo bất đẳng thức Cô-si)
\(g(x) = 2 \Leftrightarrow \sqrt {{x^2} + 1} = {1 \over {\sqrt {{x^2} + 1} }} \)
\(\Leftrightarrow {x^2} + 1 = 1 \Leftrightarrow x = 0\)
Vậy giá trị nhỏ nhất của g(x) là 2.
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học