Giải bài 77 trang 155 SGK Đại số 10 nâng cao
Chứng minh các bất đẳng thức sau:
- Bài học cùng chủ đề:
- Bài 78 trang 155 SGK Đại số 10 nâng cao
- Bài 79 trang 155 SGK Đại số 10 nâng cao
- Bài 80 trang 155 SGK Đại số 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Chứng minh các bất đẳng thức sau:
a) \(a + b + c \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ca} \) với a ≥ 0; b ≥ 0; c ≥ 0
b) a2b2 + b2c2 + c2a2 ≥ abc(a + b +c) với mọi a,b,c ∈ R
Khi nào có đẳng thức?
Đáp án
a) Ta có:
\(\eqalign{
& a + b + c \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ca} \cr
& \Leftrightarrow 2a + 2b + 2c - 2\sqrt {ab} - 2\sqrt {bc} - 2\sqrt {ca} \ge 0 \cr
& \Leftrightarrow (a - 2\sqrt {ab} + b) + (b - 2\sqrt {bc} + c) \cr&\;\;\;\;\;\;+ (c - 2\sqrt {ac} + a) \ge 0 \cr
& \Leftrightarrow {(\sqrt a - \sqrt b )^2} + {(\sqrt b - \sqrt c )^2} + {(\sqrt c - \sqrt a )^2} \ge 0 \cr} \)
Dấu “=” xảy ra khi và chỉ khi a = b = c
b) Ta có:
a2b2 + b2c2 + c2a2 ≥ abc(a + b +c)
⇔ 2a2b2 + 2b2c2 + 2c2a2 ≥ 2abc(a + b +c)
⇔ (a2b2 – 2a2bc+ a2c2) + (a2c2 – 2c2ab +b2c2) +(a2b2 – 2b2ac +b2c2) ≥ 0
⇔ (ab – ac)2 + (ac – bc)2 + (ab – bc)2 ≥ 0 (luôn đúng)
Dấu “=” xảy ra khi và chỉ khi a = b = c hoặc 2 trong 3 số a, b, c = 0
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học