Giải bài 81 trang 155 SGK Đại số 10 nâng cao
Giải và biện luận các bất phương trình sau:
- Bài học cùng chủ đề:
- Bài 82 trang 155 SGK Đại số 10 nâng cao
- Bài 83 trang 156 SGK Đại số 10 nâng cao
- Bài 84 trang 156 SGK Đại số 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Giải và biện luận các bất phương trình sau:
a) a2x + 1 > (3a - 2)x - 3
b) 2x2 + (m - 9)x + m2 + 3m + 4 ≥ 0
Đáp án
a) Bất phương trình đã cho tương đương với bất phương trình:
(a2 – 3a + 2) x > 2
+ Nếu a2 – 3a + 2 > 0, tức là a < 1 hay a > 2 thì nghiệm của bất phương trình đã cho là: \(x > {2 \over {{a^2} - 3a + 2}}\)
+ Nếu a2 – 3a + 2 < 0, tức là 1 < a < 2 thì nghiệm của bất phương trình đã cho là: \(x < {2 \over {{a^2} - 3a + 2}}\)
+ Nếu a2 – 3a + 2 = 0, tức là a = 1 hoặc a = 2 thì bất phương trình đã cho trở thành 0x > 2. Khi đó, bất phương trình này vô nghiệm.
b) Ta có:
Δ = (m – 9)2 – 8(m2 + 3m + 4) = -7(m2 + 6m – 7)
Nếu Δ ≤ 0 hay m ≤ -7 hoặc m ≥ 1 thì bất phương trình đã cho nghiệm đúng với mọi x ∈ R
Nếu Δ > 0 hay -7 < m < 1 thì tam thức ở vế trái của bất phương trình có hai nghiệm phân biệt :
\(\eqalign{
& {x_1} = {{9 - m - \sqrt { - 7({m^2} + 6m - 7)} } \over 4} \cr
& {x_2} = {{9 - m + \sqrt { - 7({m^2} + 6m - 7)} } \over 4} \cr} \)
Nghiệm của bất phương trình đã cho là: x ≤ x1 hoặc x ≥ x2.
Vậy:
+ Nếu m ≤ -7 hoặc m ≥ 1 thì tập nghiệm của bất phương trình đã cho là R
+ Nếu -7 < m < 1 thì tập nghiệm của bất phương trình đã cho là:
\(( - \infty ;{{9 - m - \sqrt { - 7({m^2} + 6m - 7)} } \over 4}) \cup \)
\(({{9 - m + \sqrt { - 7({m^2} + 6m - 7)} } \over 4},+\infty )\)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học