Giải bài 45 trang 214 SGK Đại số 10 Nâng cao
Chứng minh rằng:
- Bài học cùng chủ đề:
- Bài 46 trang 215 SGK Đại số 10 Nâng cao
- Bài 47 trang 215 SGK Đại số 10 Nâng cao
- Bài 48 trang 215 SGK Đại số 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Chứng minh rằng:
a) \({{\sin \alpha - \sin \beta } \over {\cos \alpha - \cos \beta }} = - \sqrt 3 \) nếu
\(\left\{ \matrix{
\alpha + \beta = {\pi \over 3} \hfill \cr
\cos \alpha \ne \cos \beta \hfill \cr} \right.\)
b) \({{\cos \alpha - \cos 7\alpha } \over {\sin 7\alpha - sin\alpha }} = \tan 4\alpha \) (khi các biểu thức có nghĩa)
Đáp án
a)
\(\eqalign{
& {{\sin \alpha - \sin \beta } \over {\cos \alpha - \cos \beta }} = {{2\cos {{\alpha + \beta } \over 2}\sin {{\alpha - \beta } \over 2}} \over { - 2\sin {{\alpha + \beta } \over 2}\sin {{\alpha - \beta } \over 2}}} \cr
& = - \cot {{\alpha + \beta } \over 2} = - \cot {\pi \over 6} = - \sqrt 3 \cr} \)
b)
\({{\cos \alpha - \cos 7\alpha } \over {\sin 7\alpha - sin\alpha }} = {{2\sin 4\alpha \sin 3\alpha } \over {2\cos 4\alpha \sin 3\alpha }} = \tan 4\alpha \)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học