Giải câu 18 trang 112 SGK Đại số 10 nâng cao
Chứng minh rằng với mọi số thực a, b, ta có:
- Bài học cùng chủ đề:
- Câu 19 trang 112 SGK Đại số 10 nâng cao
- Câu 20 trang 112 SGK Đại số 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Chứng minh rằng với mọi số thực a, b, ta có:
(a + b + c)2 ≤ 3(a2 + b2 + c2)
Đáp án
Ta có:
(a + b + c)2 ≤ 3(a2 + b2 + c2)
⇔ a2 + b2 + c2 +2ab + 2bc + 2ca ≤ 3a2 + 3b2 + 3c2
⇔ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
⇔ (a – b)2 + (b – c)2 + (c – a)2 ≥ 0 (luôn đúng)
Vậy (a + b + c)2 ≤ 3(a2 + b2 + c2)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học