Giải bài 69 trang 154 SGK Đại số 10 nâng cao

Giải các phương trình và bất phương trình sau

Giải các phương trình và bất phương trình sau

a) \(|{{{x^2} - 2} \over {x + 1}}|\, = 2\)

b) \(|{{3x + 4} \over {x - 2}}|\, \le   3\)

c) \(|{{2x - 3} \over {x - 3}}|\,\, \ge 1\)

d) \(|2x + 3| = |4 – 3x|\)

Đáp án

a) Điều kiện: x ≠ - 1

Ta có:

\(\eqalign{
& |{{{x^2} - 2} \over {x + 1}}|\, = 2 \Leftrightarrow \left[ \matrix{
{{{x^2} - 2} \over {x + 1}} = 2 \hfill \cr
{{{x^2} - 2} \over {x + 1}} = - 2 \hfill \cr} \right. \cr&\Leftrightarrow \left[ \matrix{
{x^2} - 2 = 2x + 2 \hfill \cr
{x^2} - 2 = - 2x - 2 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
{x^2} - 2x - 4 = 0 \hfill \cr
{x^2} + 2x = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1 \pm \sqrt 5 \hfill \cr
\left[ \matrix{
x = 0 \hfill \cr
x = - 2 \hfill \cr} \right. \hfill \cr} \right. \cr} \)

Vậy \(S = {\rm{\{ }}1 \pm \sqrt 5 ;\,0;\,2\} \)

b) Điều kiện: x ≠  2

Ta có:

\(\eqalign{
& |{{3x + 4} \over {x - 2}}|\, \le  3 \Leftrightarrow |3x + 4|\, \le \,3|x - 2| \cr
& \Leftrightarrow {(3x + 4)^2} - 9{(x - 2)^2} \le 0 \cr
& \Leftrightarrow 10(6x - 2) \le 0 \Leftrightarrow x \le {1 \over 3} \cr} \)

Vậy \(S = ( - \infty ,{1 \over 3}{\rm{]}}\)

c) Điều kiện: x ≠ 3

Ta có:

\(\eqalign{
& |{{2x - 3} \over {x - 3}}|\,\, \ge 1\, \Leftrightarrow \,|2x - 3|\, \ge \,|x - 3| \cr
& \Leftrightarrow {(2x - 3)^2} - {(x - 3)^2} \ge 0 \cr
& \Leftrightarrow x(3x - 6) \ge 0 \Leftrightarrow \left[ \matrix{
x \le 0 \hfill \cr
x \ge 2 \hfill \cr} \right. \cr} \)

Vậy \(S = (-∞, 0] ∪ [2, 3) ∪ [3, +∞)\)

d) Ta có:

\(|2x + 3|\, = \,|4 - 3x|\, \Leftrightarrow \left[ \matrix{
2x + 3 = 4 - 3x \hfill \cr
2x + 3 = 3x - 4 \hfill \cr} \right. \)

\(\Leftrightarrow \left[ \matrix{
x = {1 \over 5} \hfill \cr
x = 7 \hfill \cr} \right.\)

Vậy \(S = {\rm{\{ }}{1 \over 5},7\} \)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật