Giải bài 24 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao

Cho tam giác ABC và điểm G. Chứng minh rằng

Bài 24. Cho tam giác \(ABC\) và điểm \(G\). Chứng minh rằng

a) Nếu \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \) thì \(G\) là trọng tâm tam giác \(ABC\);

b) Nếu có điểm \(O\) sao cho \(\overrightarrow {OG}  = {1 \over 3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\) thì \(G\) là trọng tâm tam giác \(ABC\).

Hướng dẫn trả lời

a) Gọi \({G_1}\) là trọng tâm tam giác \(ABC\). Từ đó, ta có \(\overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C}  = \overrightarrow 0 .\)

Theo giả thiết, \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

\(\eqalign{
& \Rightarrow \,\overrightarrow {G{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {G{G_1}} + \overrightarrow {{G_1}B} + \overrightarrow {G{G_1}} + \overrightarrow {{G_1}C} = \overrightarrow 0 \cr
& \Rightarrow \,\,3\overrightarrow {G{G_1}} + \left( {\overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) = \overrightarrow {0\,} \,\,\,\,\, \Rightarrow \,\,3\overrightarrow {G{G_1}} = \overrightarrow 0 \,\,\,\,\,\,\, \Rightarrow \,\,\overrightarrow {G{G_1}} = \overrightarrow 0 \,\,\,\, \Rightarrow \,G \equiv {G_1} \cr} \)

b) Gọi \( {G_1}\) là trọng tâm tam giác \(ABC\). Từ đó, ta có \(\overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C}  = \overrightarrow 0 .\)

\(\eqalign{
& \overrightarrow {OG} = {1 \over 3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) \cr
& = {1 \over 3}\left( {3\overrightarrow {O{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) = \overrightarrow {O{G_1}} \,\,\,\,\, \Rightarrow \,G \equiv {G_1} \cr} \)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật