Giải bài 34 trang 31 SGK Hình học 10 Nâng cao

Trong mặt phẳng tọa độ, cho ba điểm

Bài 34. Trong mặt phẳng tọa độ, cho ba điểm \(A( - 3;4)\,,\,B(1;1)\,,\,C(9; - 5).\)

a) Chứng minh ba điểm \(A, B, C\) thẳng hàng.

b) Tìm tọa độ điểm \(D\) sao cho \(A\) là trung điểm của \(BD\).

c) Tìm tọa độ điểm \(E\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.

Hướng dẫn trả lời

a) Ta có

\(\,\,\,\left. \matrix{
\overrightarrow {AB} = (1 + 3\,;\,1 - 4) = (4\,;\, - 3) \hfill \cr
\overrightarrow {AC} = (9 + 3\,;\, - 5 - 4) = (12\,;\, - 9) \hfill \cr} \right\}\, \Rightarrow \,\overrightarrow {AC} \, = 3\overrightarrow {AB} \)

Vậy ba điểm \(A, B, C\) thẳng hàng.

b) Gọi \(D\,({x_D}\,;\,{y_D})\). Do \(A\) là trung điểm của \(BD\) nên ta có

\(\left\{ \matrix{
{x_A} = {{{x_B} + {x_D}} \over 2} \hfill \cr
{y_A} = {{{y_B} + {y_D}} \over 2} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{
- 3 = {{1 + {x_D}} \over 2} \hfill \cr
4 = {{1 + {y_D}} \over 2} \hfill \cr} \right.\,\, \Leftrightarrow \left\{ \matrix{
{x_D} = - 7 \hfill \cr
{y_D} = 7 \hfill \cr} \right.\)

Vậy \(D( - 7\,;\,7)\).

c) Gọi \(E\,({x_E}\,;\,0)\) trên trục \(Ox\) sao cho \(A, B, E\) thẳng hàng.

Do đó có số \(k\) thỏa mãn \(\overrightarrow {AE}  = k\overrightarrow {AB} \)

\(\eqalign{
& \overrightarrow {AB} = \left( {4\,;\, - 3} \right)\,;\,\,\overrightarrow {AE} = \left( {{x_E} + 3\,;\, - 4} \right) \cr
& \Rightarrow \,\,\left\{ \matrix{
{x_E} + 3 = 4k \hfill \cr
- 4 = - 3k \hfill \cr} \right.\,\, \Rightarrow \,\left\{ \matrix{
k = {4 \over 3} \hfill \cr
{x_E} = {7 \over 3} \hfill \cr} \right.\,\,\, \Rightarrow \,E\,\left( {{7 \over 3}\,;\,0} \right)\, \cr} \)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật