Giải bài 39 trang 213 SGK Đại số 10 Nâng cao
Sử dụng 750 = 450 + 30o, hãy tính giá trị lượng giác của góc 750
- Bài học cùng chủ đề:
- Bài 40 trang 213 SGK Đại số 10 Nâng cao
- Bài 41 trang 214 SGK Đại số 10 Nâng cao
- Bài 42 trang 214 SGK Đại số 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Sử dụng 750 = 450 + 30o, hãy tính giá trị lượng giác của góc 750
Sử dụng 15o = 45o - 30o, hãy tính giá trị lượng giác của góc 150. (đối chiếu với kết quả bài tập 29)
Đáp án
a) Ta có:
\(\eqalign{
& \cos {75^0} = \cos ({45^0} + {30^0}) \cr&= \cos {45^0}\cos {30^0} - \sin {45^0}\sin {30^0} \cr
& = {{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} - {1 \over 2}) = {{\sqrt 2 } \over 4}(\sqrt 3 - 1) \cr
& \sin {75^0} = \sin ({45^0} + {30^0}) \cr&= \sin {45^0}\cos {30^0} + \cos {45^0}\sin {30^0} \cr
& = {{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} + {1 \over 2}) = {{\sqrt 2 } \over 4}(\sqrt 3 + 1) \cr
& \tan{75^0} = {{\sqrt 3 + 1} \over {\sqrt 3 - 1}} = 2 + \sqrt 3 \cr
& \cot {75^0} = 2 - \sqrt 3 \cr} \)
b) Ta có:
\(\eqalign{
& \cos {15^0} = \cos ({45^0} - {30^0})\cr& = \cos {45^0}\cos {30^0} + \sin {45^0}\sin {30^0} \cr
& = {{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} + {1 \over 2}) = {{\sqrt 2 } \over 4}(\sqrt 3 + 1)\,( = \sin{75^0}) \cr
& \sin {15^0} = \sin ({45^0} - {30^0}) \cr&= \sin {45^0}\cos {30^0} + \cos {45^0}\sin {30^0} \cr
& = {{\sqrt 2 } \over 2}({{\sqrt 3 } \over 2} - {1 \over 2}) = {{\sqrt 2 } \over 4}(\sqrt 3 - 1) = (\cos{75^0}) \cr
& \tan {15^0} = {{\sqrt 3 - 1} \over {\sqrt 3 + 1}} = 2 - \sqrt 3 \left( { = \cot {{75}^0}} \right) \cr
& \cot {15^0} = 2 + \sqrt 3 \cr} \)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học