Giải bài 22 trang 23 Sách giáo khoa (SGK) Hình học 10 Nâng cao
Cho tam giác OAB. Gọi M, N lần lượt là trung điểm hai cạnh OA và OB. Hãy tìm các số m thích hợp trong mỗi đẳng thức sau đây
- Bài học cùng chủ đề:
- Bài 23 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao
- Bài 24 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao
- Bài 25 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 22. Cho tam giác \(OAB\). Gọi \(M, N\) lần lượt là trung điểm hai cạnh \(OA\) và \(OB\). Hãy tìm các số \(m\) và \(n\) thích hợp trong mỗi đẳng thức sau đây
\(\eqalign{
& \overrightarrow {OM} = m\overrightarrow {OA} + n\overrightarrow {OB} ;\,\,\,\,\,\,\overrightarrow {MN} = m\overrightarrow {OA} + n\overrightarrow {OB} ; \cr
& \overrightarrow {AN} = m\overrightarrow {OA} + n\overrightarrow {OB} ;\,\,\,\,\,\,\,\,\overrightarrow {MB} = m\overrightarrow {OA} + n\overrightarrow {OB} . \cr} \)
Hướng dẫn trả lời
Ta có
\(\eqalign{
& \overrightarrow {OM} = {1 \over 2}\overrightarrow {OA} = {1 \over 2}\overrightarrow {OA} + 0.\overrightarrow {OB} \,\,\,\,\, \Rightarrow \,m = {1 \over 2},\,n = 0. \cr
& \overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} = {1 \over 2}\overrightarrow {OB} - {1 \over 2}\overrightarrow {OA} = \left( { - {1 \over 2}} \right)\overrightarrow {OA} + {1 \over 2}\overrightarrow {OB} \,\,\,\,\, \Rightarrow \,m = - {1 \over 2},\,n = {1 \over 2}. \cr
& \overrightarrow {AN} = \overrightarrow {ON} - \overrightarrow {OA} = {1 \over 2}\overrightarrow {OB} - \overrightarrow {OA} = \left( { - 1} \right)\overrightarrow {OA} + {1 \over 2}\overrightarrow {OB} \,\,\,\, \Rightarrow \,m = - 1,\,n = {1 \over 2}. \cr
& \overrightarrow {MB} = \overrightarrow {OB} - \overrightarrow {OM} = \overrightarrow {OB} - {1 \over 2}\overrightarrow {OA} = \left( { - {1 \over 2}} \right)\overrightarrow {OA} + \overrightarrow {OB} \,\,\,\, \Rightarrow \,m = - {1 \over 2},\,n = 1. \cr} \)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học