Giải bài 19 trang 18 Sách giáo khoa (SGK) Hình học 10 Nâng cao
Chứng minh rằng...
- Bài học cùng chủ đề:
- Bài 20 trang 18 Sách giáo khoa (SGK) Hình học 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 19. Chứng minh rằng \(\overrightarrow {AB} = \overrightarrow {CD} \) khi và chỉ khi trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau.
Hướng dẫn trả lời
Giả sử \(\overrightarrow {AB} = \overrightarrow {CD} \) và \(M, N\) lần lượt là trung điểm của \(AD,BC\).
Ta có \(\overrightarrow {MA} + \overrightarrow {MD} = \overrightarrow 0 ,\,\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \) và \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} ,\,\overrightarrow {MN} = \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} \) suy ra
\(\eqalign{
& 2\overrightarrow {MN} = \overrightarrow {MN} + \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} + \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\overrightarrow {MA} + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BN} + \overrightarrow {CN} } \right) + \overrightarrow {AB} + \overrightarrow {DC} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AB} - \overrightarrow {CD} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow 0 \cr} \)
Do đó, \(\overrightarrow {MN} = \overrightarrow 0 \) , tức là \(M \equiv N\).
Vậy trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau.
Ngược lại, ta giả sử trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau, suy ra
\(\overrightarrow {MA} + \overrightarrow {MD} = \overrightarrow 0 ,\,\overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)
Suy ra \(\overrightarrow {AB} = \overrightarrow {AM} + \overrightarrow {MB} = \overrightarrow {CM} + \overrightarrow {MD} = \overrightarrow {CD} \).
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học