Giải bài 20 trang 18 Sách giáo khoa (SGK) Hình học 10 Nâng cao

Cho sáu điểm A, B, C, D, E, F. Chứng minh rằng

Bài 20. Cho sáu điểm \(A, B, C, D, E, F\). Chứng minh rằng

\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CD}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} \).

Hướng dẫn trả lời

Theo quy tắc ba điểm, ta có

\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \left( {\overrightarrow {AE} + \overrightarrow {ED} } \right) + \left( {\overrightarrow {BF} + \overrightarrow {FE} } \right) + \left( {\overrightarrow {CD} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FE} + \overrightarrow {ED} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FD} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \cr} \)

Tương tự, ta cũng có

\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \left( {\overrightarrow {AF} + \overrightarrow {FD} } \right) + \left( {\overrightarrow {BD} + \overrightarrow {DE} } \right) + \left( {\overrightarrow {CE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FD} + \overrightarrow {DE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \cr} \)

Vậy ta có \(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CD}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} \)

Các bài học liên quan
Bài 27 trang 24 SGK Hình học 10 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật