Giải bài 26 trang 24 SGK Hình học 10 Nâng cao
Chứng minh rằng nếu G và G' lần lượt là trọng tâm tam giác ABC và tam giác A'B'C' thì
- Bài học cùng chủ đề:
- Bài 27 trang 24 SGK Hình học 10 Nâng cao
- Bài 28 trang 24 SGK Hình học 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 26. Chứng minh rằng nếu \(G\) và \(G'\) lần lượt là trọng tâm tam giác \(ABC\) và tam giác \(A'B'C'\) thì
\(3\overrightarrow {G{G'}} = \overrightarrow {A{A'}} + \overrightarrow {B{B'}} + \overrightarrow {C{C'}} .\)
Từ đó hãy suy ra điều kiện cần và đủ để hai tam giác \(ABC\) và \(A'B'C'\) có trọng tâm trùng nhau.
Hướng dẫn trả lời
Vì \(G\) là trọng tâm tam giác \(ABC\) nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
Vì \(G'\) là trọng tâm tam giác \(A'B'C'\) nên
\(\overrightarrow {{G'}A'} + \overrightarrow {{G'}B'} + \overrightarrow {{G'}C'} = \overrightarrow 0 \)
Áp dụng quy tắc ba điểm, ta có
\(\eqalign{
& \overrightarrow {A{A'}} + \overrightarrow {B{B'}} + \overrightarrow {C{C'}} = \left( {\overrightarrow {AG} + \overrightarrow {G{G'}} + \overrightarrow {{G'}{A'}} } \right) + \left( {\overrightarrow {BG} + \overrightarrow {G{G'}} + \overrightarrow {{G'}{B'}} } \right) + \left( {\overrightarrow {CG} + \overrightarrow {G{G'}} + \overrightarrow {{G'}{C'}} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3\overrightarrow {G{G'}} + \left( {\overrightarrow {AG} + \overrightarrow {BG} + \overrightarrow {CG} } \right) + \left( {\overrightarrow {{G'}{A'}} + \overrightarrow {{G'}{B'}} + \overrightarrow {{G'}{C'}} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3\overrightarrow {G{G'}} . \cr} \)
Vậy điều kiện cần và đủ để hai tam giác \(ABC\) và \(A'B'C'\) có trọng tâm trùng nhau là
\(\overrightarrow {A{A'}} + \overrightarrow {B{B'}} + \overrightarrow {C{C'}} = \overrightarrow 0 \)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học