Giải câu 5 trang 110 SGK Đại số 10 nâng cao
Chứng minh rằng:
- Bài học cùng chủ đề:
- Câu 6 trang 110 SGK Đại số 10 nâng cao
- Câu 7 trang 110 SGK Đại số 10 nâng cao
- Câu 8 trang 110 SGK Đại số 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Chứng minh rằng, nếu a > 0 và b > 0 thì \({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)
Đáp án
Với \(a > 0, b > 0\), ta có:
\(\eqalign{
& {1 \over a} + {1 \over b} \ge {4 \over {a + b}} \Leftrightarrow {{a + b} \over {ab}} \ge {4 \over {a + b}} \cr&\Leftrightarrow {(a + b)^2} \ge 4ab \cr
& \Leftrightarrow {a^2} + 2ab + {b^2} \ge 4ab \Leftrightarrow {(a - b)^2} \ge 0 \cr} \)
Ta thấy điều này luôn đúng
Vậy \({1 \over a} + {1 \over b} \ge {4 \over {a + b}}\)
Đẳng thức xảy ra khi \(a = b\)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học