Giải bài 7 trang 221 SGK Đại số 10 Nâng cao

Không giải phương trình, tính gần đúng tổng các bình phương hai nghiệm của phương trình (chính xác đến hàng phần trăm)

Cho phương trình: \({x^2} + 2(\sqrt 3  + 1)x + 2\sqrt 3  = 0\)

a) Không giải phương trình, tính gần đúng tổng các bình phương hai nghiệm của phương trình (chính xác đến hàng phần trăm)

b) Tính nghiệm gần đúng của phương trình (chính xác đến hàng phần trăm).

Đáp án

a) Theo định lý Vi-ét, ta có:

\(\eqalign{
& \left\{ \matrix{
{x_1} + {x_2} = - 2(\sqrt 3 + 1) \hfill \cr
{x_1}{x_2} = 2\sqrt 3 \,\,\,(\Delta ' > 0) \hfill \cr} \right. \cr
& \Rightarrow x_1^2 + x_2^2 = {({x_1} + {x_2})^2} - 2{x_1}{x_2} \cr&= 4{(\sqrt 3 + 1)^2} - 4\sqrt 3 = 4(4 + \sqrt 3 ) \approx 22,93 \cr} \) 

b) \(x_1≈ -0, 73;x_2≈ -4, 73\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật