Giải bài 7 trang 221 SGK Đại số 10 Nâng cao
Không giải phương trình, tính gần đúng tổng các bình phương hai nghiệm của phương trình (chính xác đến hàng phần trăm)
- Bài học cùng chủ đề:
- Bài 8 trang 222 SGK Đại số 10 Nâng cao
- Bài 9 trang 222 SGK Đại số 10 Nâng cao
- Bài 10 trang 222 SGK Đại số 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Cho phương trình: \({x^2} + 2(\sqrt 3 + 1)x + 2\sqrt 3 = 0\)
a) Không giải phương trình, tính gần đúng tổng các bình phương hai nghiệm của phương trình (chính xác đến hàng phần trăm)
b) Tính nghiệm gần đúng của phương trình (chính xác đến hàng phần trăm).
Đáp án
a) Theo định lý Vi-ét, ta có:
\(\eqalign{
& \left\{ \matrix{
{x_1} + {x_2} = - 2(\sqrt 3 + 1) \hfill \cr
{x_1}{x_2} = 2\sqrt 3 \,\,\,(\Delta ' > 0) \hfill \cr} \right. \cr
& \Rightarrow x_1^2 + x_2^2 = {({x_1} + {x_2})^2} - 2{x_1}{x_2} \cr&= 4{(\sqrt 3 + 1)^2} - 4\sqrt 3 = 4(4 + \sqrt 3 ) \approx 22,93 \cr} \)
b) \(x_1≈ -0, 73;x_2≈ -4, 73\)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học