Giải bài 14 trang 222 SGK Đại số 10 Nâng cao

Tìm giá trị nhỏ nhất của các hàm số sau

Tìm giá trị nhỏ nhất của các hàm số sau

a) \(f(x) = x + {2 \over {x + 2}}\) trên khoảng \((-2; +∞)\)

b) \(g(x) = 3{x^2} + {1 \over x}\) trên khoảng \((0; +∞)\)

Đáp án

a) Áp dụng bất đẳg thức Cô-si, ta có:

\(f(x) = x + 2{2 \over {x + 2}} - 2 \ge 2\sqrt {(x + 2){2 \over {x + 2}}}  - 2 \)

                                                                     \(= 2\sqrt 2  - 2\) 

Dấu “=”xảy ra khi và chỉ khi:

\(x + 2 = {2 \over {x + 2}} \Leftrightarrow {(x + 2)^2} = 2 \Leftrightarrow \left\{ \matrix{
x = \sqrt 2 - 2 \hfill \cr
x = - \sqrt 2 - 2 \hfill \cr} \right.\)

b) Áp dụng bất đẳng thức Cô-si cho ba số, ta có:

\(g(x) = 3{x^2} + {1 \over {2x}} + {1 \over {2x}} \ge 3\root 3 \of {3{x^2}.{1 \over {2x}}.{1 \over {2x}}}  = 3\root 3 \of {{3 \over 4}} \)

Dấu “=” xảy ra \( \Leftrightarrow 3{x^2} = {1 \over {2x}} \Leftrightarrow x = \root 3 \of {{1 \over 6}} \)

Vậy: \(\min \,g(x) = 3\root 3 \of {{3 \over 4}}  \Leftrightarrow x = \root 3 \of {{1 \over 6}} \)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật