Giải bài 36 trang 207 SGK Đại số 10 Nâng cao
Tính diện tích tam giác A’MA bằng hai cách khác nhau để suy ra: sin2α = 2sinα cosα
- Bài học cùng chủ đề:
- Bài 37 trang 207 SGK Đại số 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Với số \(α,0 < \alpha < {\pi \over 2}\) , xét điểm M của đường tròn lượng giác xác định bởi 2α , rồi xét tam giác vuông A’MA (A’ đối xứng với A qua tâm O của đường tròn).
a) Tính AM2 bằng hai cách khác nhau để suy ra: cos2α = 1 – 2sin2α
b) Tính diện tích tam giác A’MA bằng hai cách khác nhau để suy ra: sin2α = 2sinα cosα
c) Chứng minh: \(\sin {\pi \over 8} = {1 \over 2}\sqrt {2 - \sqrt 2 } ;\,\,\,\cos {\pi \over 8} = {1 \over 2}\sqrt {2 + \sqrt 2 } \) rồi tính các giá trị lượng giác của các góc \({{3\pi } \over 8}\) và \({{5\pi } \over 8}\)
Đáp án
a) Ta có:
\(\eqalign{
& A{M^2} = \overline {AH} .\overline {{\rm{AA}}} {\rm{' = (}}\overline {AO} + \overline {OH} ).\overline {{\rm{AA}}'} \cr
& = ( - 1 + \cos 2\alpha )( - 2) = 2(1 - \cos 2\alpha ) \cr} \)
Lại có: \(A{M^2} = A{A^2}.si{n^2}\alpha = 4si{n^2}\alpha \)
Vậy: \(2si{n^2}\alpha = 1-cos2\alpha \)
b) Ta có: \({S_{A'MA}} = {1 \over 2}AA'.MH = MH = \sin 2\alpha \)
Lại có:
\({S_{A'MA}} = {1 \over 2}A'M.AM = {1 \over 2}A'A\cos \alpha .A'A\sin \alpha \)
\(= 2\sin \alpha \cos \alpha \)
Vậy: \(\sin2α = 2\sinα \cosα\)
c) Ta có: \(\cos {\pi \over 4} = 1 - 2{\sin ^2}{\pi \over 8}\) nên:
\(\eqalign{
& {\sin ^2}{\pi \over 8} = {1 \over 2}(1 - {{\sqrt 2 } \over 2}) = {{2 - \sqrt 2 } \over 4} \cr
& \sin {\pi \over 8} = {{\sqrt {2 - \sqrt 2 } } \over 2} \cr
& \cos {\pi \over 4} = 2{\cos ^2}{\pi \over 8} - 1 \cr&\Rightarrow {\cos ^2}{\pi \over 8} = {1 \over 2}(1 + {{\sqrt 2 } \over 2}) = {{2 + \sqrt 2 } \over 4} \cr
& \cos {\pi \over 8} = {{\sqrt {2 + \sqrt 2 } } \over 2} \cr
& {{3\pi } \over 8} = {\pi \over 2} - {\pi \over 8} \Rightarrow \left\{ \matrix{
\cos {{3\pi } \over 8} = \sin {\pi \over 8} = {{\sqrt {2 - \sqrt 2 } } \over 2} \hfill \cr
\sin {{3\pi } \over 8} = \cos {\pi \over 8} = {{\sqrt {2 + \sqrt 2 } } \over 2} \hfill \cr
\tan {{3\pi } \over 8} = \cot {\pi \over 8} = \sqrt 2 + 1 \hfill \cr
\cot {{3\pi } \over 8} = \tan {\pi \over 8} = \sqrt 2 - 1 \hfill \cr} \right. \cr
& {{5\pi } \over 8} = {\pi \over 2} + {\pi \over 8} \Rightarrow \left\{ \matrix{
\cos {{5\pi } \over 8} = - \sin {\pi \over 8} = {{\sqrt {2 - \sqrt 2 } } \over 2} \hfill \cr
\sin {{5\pi } \over 8} = \cos {\pi \over 8} = {{\sqrt {2 + \sqrt 2 } } \over 2} \hfill \cr
\tan {{5\pi } \over 8} = - \cot {\pi \over 8} = - \sqrt 2 - 1 \hfill \cr
\cot {{5\pi } \over 8} = - \tan {\pi \over 8} = 1 - \sqrt 2 \hfill \cr} \right. \cr} \)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học