Giải bài 17 trang 200 SGK Đại số 10 Nâng cao
Tính giá trị lượng giác của các góc sau:
- Bài học cùng chủ đề:
- Bài 18 trang 200 SGK Đại số 10 Nâng cao
- Bài 19 trang 200 SGK Đại số 10 Nâng cao
- Bài 20 trang 200 SGK Đại số 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Tính giá trị lượng giác của các góc sau:
a) \( - {\pi \over 3} + (2k + 1)\pi \)
b) kπ
c) \({\pi \over 2} + k\pi \)
d) \({\pi \over 4} + k\pi \,(k \in Z)\)
Đáp án
a) Ta có: \( - {\pi \over 3} + (2k + 1)\pi = {{2\pi } \over 3} + k2\pi \)
Ta có:
\(\eqalign{
& \sin ({{2\pi } \over 3} + k2\pi ) = \sin {{2\pi } \over 3} = {{\sqrt 3 } \over 2} \cr
& \cos ({{2\pi } \over 3} + k2\pi ) = \cos {{2\pi } \over 3} = - {1 \over 2} \cr
& \tan ({{2\pi } \over 3} + k2\pi ) = \tan {{2\pi } \over 3} = - \sqrt 3 \cr
& \cot ({{2\pi } \over 3} + k2\pi ) = \cot {{2\pi } \over 3} = - {{\sqrt 3 } \over 3} \cr} \)
b) Ta có
cos kπ = 1 nếu k chẵn
cos kπ = -1 nếu k lẻ
⇒cos kπ = (-1)k
c) Ta có:
\(\eqalign{
& \cos ({\pi \over 2} + k\pi ) = 0 \cr
& sin({\pi \over 2} + k\pi ) = {( - 1)^k} \cr
& cot({\pi \over 2} + k\pi ) = 0 \cr} \)
\(\tan ({\pi \over 2} + k\pi )\) không xác định
d) Ta có:
\(\eqalign{
& \cos ({\pi \over 4} + k\pi ) = {( - 1)^k}{{\sqrt 2 } \over 2} \cr
& \sin ({\pi \over 4} + k\pi ) = {( - 1)^k}{{\sqrt 2 } \over 2} \cr
& \tan ({\pi \over 4} + k\pi ) = \cot ({\pi \over 4} + k\pi ) = 1 \cr} \)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học