Giải bài 1 trang 43 SGK Hình học 10 nâng cao

Tính giá trị đúng của các biểu thức sau( không dùng máy tính bỏ túi hoặc bảng số)

Bài 1. Tính giá trị đúng của các biểu thức sau (không dùng máy tính bỏ túi hoặc bảng số)

a) \((2\sin {30^0} + \cos {135^0} - 3\tan {150^0})(\cos {180^0} - \cot {60^0})\)

b) \({\sin ^2}{90^0} + {\cos ^2}{120^0} + {\cos ^2}{0^0} - {\tan ^2}{60^0} + {\cot ^2}{135^0}\).

Hướng dẫn trả lời

a) Ta có 

\(\eqalign{
& \cos {135^0} = \cos ({180^0} - {45^0}) = - \cos {45^0} = - {{\sqrt 2 } \over 2} \cr
& \tan {150^0} = \tan ({180^0} - {30^0}) = - \tan {30^0} = - {{\sqrt 3 } \over 3} \cr} \)

Do đó

\(\eqalign{
& (2\sin {30^0} + \cos {135^0} - 3\tan {150^0})(\cos {180^0} - \cot {60^0}) \cr
& = \left( {1 - {{\sqrt 2 } \over 2} + \sqrt 3 } \right)\,\left( { - 1 - {{\sqrt 3 } \over 3}} \right) = \left( {{{\sqrt 2 } \over 2} - \sqrt 3 - 1} \right)\left( {1 + {{\sqrt 3 } \over 3}} \right) \cr}.\)

b) Ta có

\(\eqalign{
& \cos {120^0} = \cos ({180^0} - {60^0}) = - \cos {60^0} = - {1 \over 2} \cr
& \cot {135^0} = \cot ({180^0} - {45^0}) = - \cot {45^0} = - 1 \cr} \)

Do đó

\(\eqalign{
& {\sin ^2}{90^0} + {\cos ^2}{120^0} + {\cos ^2}{0^0} - {\tan ^2}{60^0} + {\cot ^2}{135^0} \cr
& = 1 + {1 \over 4} + 1 - 3 + 1 = {1 \over 4} \cr} \)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật