Giải bài 9 trang 52 SGK Hình học 10 nâng cao
Cho tam giác ABC với ba đường trung tuyến AD, BE, CF. Chứng minh rằng
- Bài học cùng chủ đề:
- Bài 10 trang 52 SGK Hình học 10 nâng cao
- Bài 11 trang 52 SGK Hình học 10 nâng cao
- Bài 12 trang 52 SGK Hình học 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 9. Cho tam giác \(ABC\) với ba đường trung tuyến \(AD, BE, CF\). Chứng minh rằng
\(\overrightarrow {BC} .\overrightarrow {AD} + \overrightarrow {CA} .\overrightarrow {BE} + \overrightarrow {AB} .\overrightarrow {CF} = 0\).
Hướng dẫn trả lời
Ta có \(\overrightarrow {AD} = {1 \over 2}(\overrightarrow {AB} + \overrightarrow {AC} )\)
\(\eqalign{
& \overrightarrow {BE} = {1 \over 2}(\overrightarrow {BA} + \overrightarrow {BC} ) \cr
& \overrightarrow {CF} = {1 \over 2}(\overrightarrow {CA} + \overrightarrow {CB} ) \cr} \)
Do đó \(\overrightarrow {BC} .\overrightarrow {AD} + \overrightarrow {CA} .\overrightarrow {BE} + \overrightarrow {AB} .\overrightarrow {CF} \)
\(\eqalign{
& = {1 \over 2}\overrightarrow {BC} (\overrightarrow {AB} + \overrightarrow {AC} ) + {1 \over 2}\overrightarrow {CA} (\overrightarrow {BA} + \overrightarrow {BC} ) + {1 \over 2}\overrightarrow {AB} (\overrightarrow {CA} + \overrightarrow {CB} ) \cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BA} + \overrightarrow {CA} \overrightarrow {BC} + \overrightarrow {AB} \overrightarrow {CA} + \overrightarrow {AB} \overrightarrow {CB} )\cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {AB} \overrightarrow {CB} ) + {1 \over 2}(\overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BC} ) + {1 \over 2}(\overrightarrow {CA} \overrightarrow {BA} + \overrightarrow {AB} \overrightarrow {CA} ) = 0 \cr} \)
(điều phải chứng minh)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học