Giải bài 14 trang 52 SGK Hình học 10 nâng cao
Trong mặt phẳng tọa độ, cho tam giác ABC
Bài 14. Trong mặt phẳng tọa độ, cho tam giác \(ABC\) có các đỉnh \(A( - 4\,;\,1),\,B(2\,;\,4),\,C(2\,;\, - 2)\).
a) Tính chu vi và diện tích của tam giác đó.
b) Tìm tọa độ của trọng tâm \(G\), trực tâm \(H\) và tâm \(I\) của đường tròn ngoại tiếp tam giác \(ABC\). Từ đó hãy kiểm tra tính chất thẳng hàng của ba điểm \(I, G, H\).
Hướng dẫn trả lời
a) Ta có \(\overrightarrow {AB} = (6\,;\,3)\,,\,\,\overrightarrow {AC} = (6\,;\, - 3)\,,\,\,\overrightarrow {BC} = (0\,;\, - 6).\) Suy ra
\(\eqalign{
& AB = \sqrt {{6^2} + {3^2}} = \sqrt {45} = 3\sqrt 5 \cr
& AC = \sqrt {{6^2} + {{( - 3)}^2}} = \sqrt {45} = 3\sqrt 5 \cr
& BC = \sqrt {{0^2} + {{( - 6)}^2}} = \sqrt {36} = 6 \cr} \)
Tam giác \(ABC\) cân tại \(A\).
Chu vi tam giác \(ABC\) là \(3\sqrt 5 + 3\sqrt 5 + 6 = 6\sqrt 5 + 6\).
Gọi \(M\) là trung điểm của \(BC\) thì \(AM\) là đường cao của ta giác \(ABC\).
Ta có \(M(2\,;\,1)\,,\,\,\overrightarrow {AM} = (6\,;\,0)\,\, \Rightarrow \,\,AM = \sqrt {{6^2} + 0} = 6\).
Diện tích tam giác \(ABC\) là
\({S_{ABC}} = {1 \over 2}BC.AM = {1 \over 2}.6.6 = 18\)
b) Tọa độ trọng tâm \(G\) của tam giác \(ABC\) là
\(\left\{ \matrix{
{x_G} = {1 \over 3}({x_A} + {x_B} + {x_C}) = {1 \over 3}( - 4 + 2 + 2) = 0 \hfill \cr
{y_G} = {1 \over 3}({y_A} + {y_B} + {y_C}) = {1 \over 3}(1 + 4 - 2) = 1 \hfill \cr} \right.\,\)
Vậy \(G\,(0\,;\,1)\).
Gọi \(H\,({x_H}\,,\,{y_H})\) là trực tâm tam giác \(ABC\). Ta có
\(\eqalign{
& \left\{ \matrix{
\overrightarrow {AH} .\,\overrightarrow {BC} = 0 \hfill \cr
\overrightarrow {BH} .\,\overrightarrow {AC} = 0 \hfill \cr} \right.\,\, \Leftrightarrow \,\,\left\{ \matrix{
({x_H} + 4).0 + ({y_H} - 1).( - 6) = 0 \hfill \cr
({x_H} - 2).6 + ({y_H} - 4).( - 3) = 0 \hfill \cr} \right.\,\, \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_H} = {1 \over 2}\hfill \cr
{y_H} = 1 \hfill \cr} \right. \cr} \)
Vậy \(H\,\left( {{1 \over 2}\,;\,1} \right)\).
Gọi \(I\,({x_I}\,,\,{y_I})\) là tâm đường tròn ngoại tiếp tam giác \(ABC\). Ta có
\(\eqalign{
& \left\{ \matrix{
A{I^2} = B{I^2} \hfill \cr
A{I^2} = C{I^2} \hfill \cr} \right.\,\, \Leftrightarrow \,\,\left\{ \matrix{
{({x_I} + 4)^2} + {({y_I} - 1)^2} = {({x_I} - 2)^2} + {({y_I} - 4)^2} \hfill \cr
{({x_I} + 4)^2} + {({y_I} - 1)^2} = {({x_I} - 2)^2} + {({y_I} + 2)^2} \hfill \cr} \right. \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_I}^2 + 8{x_I} + 16 + {y_I}^2 - 2{y_I} + 1 = {x_I}^2 - 4{x_I} + 4 + {y_I}^2 - 8{y_I} + 16 \hfill \cr
{x_I}^2 + 8{x_I} + 16 + {y_I}^2 - 2{y_I} + 1 = {x_I}^2 - 4{x_I} + 4 + {y_I}^2 + 4{y_I} + 4 \hfill \cr} \right. \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
4{x_I} + 2{y_I} = 1 \hfill \cr
4{x_I} - 2{y_I} = - 3 \hfill \cr} \right.\,\, \Leftrightarrow \,\,\left\{ \matrix{
{x_I} = - {1 \over 4} \hfill \cr
{y_I} = 1 \hfill \cr} \right. \cr} \)
Vậy \(I\,( - {1 \over 4}\,;\,1)\).
Khi đó, ta có \(\overrightarrow {IG} = \left( {{1 \over 4}\,;\,0} \right)\,,\,\,\,\overrightarrow {IH} = \left( {{3 \over 4}\,;\,0} \right)\).
Do đó \(\overrightarrow {IG} = {1 \over 3}\overrightarrow {IH} \) ,
Suy ra \(I, G, H\) thẳng hàng.
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học