Giải bài 30 trang 59 SGK Đại số 10 nâng cao
Viết mỗi hàm số sau đây thành dạng y = a(x - p)2 + q
- Bài học cùng chủ đề:
- Bài 31 trang 59 SGK Đại số 10 nâng cao
- Bài 32 trang 59 SGK Đại số 10 nâng cao
- Bài 33 trang 60 SGK Đại số 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Viết mỗi hàm số sau đây thành dạng \(y{\rm{ }} = {\rm{ }}a{\left( {x{\rm{ }} - {\rm{ }}p} \right)^2} + q\) từ đó hãy cho biết đồ thị của nó có thể suy ra từ đồ thị hàm số nào nhờ các phép tịnh tiến đồ thị song song với các trục tọa độ và mô tả cụ thể các phép tịnh tiến.
a) \(y{\rm{ }} = {\rm{ }}{x^2} - {\rm{ }}8x{\rm{ }} + {\rm{ }}12\);
b) \({y{\rm{ }} = {\rm{ }} - 3{x^2} - {\rm{ }}12x{\rm{ }} + {\rm{ }}9}\)
Giải
a) Ta có:
\(y{\rm{ }} = {\rm{ }}{x^2} - {\rm{ }}8x{\rm{ }} + {\rm{ }}16{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}4} \right)^2}-{\rm{ }}4\)
Đồ thị hàm số \(y = {\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}4} \right)^2}-{\rm{ }}4\) có được nhờ tịnh tiến liên tiếp đồ thị hàm số \(y = x^2\) về phải 4 đơn vị, rồi xuống dưới 4 đơn vị.
b) Ta có:
\(y{\rm{ }} = {\rm{ }} - 3\left( {{x^2} + {\rm{ }}4x{\rm{ }} + {\rm{ }}4} \right){\rm{ }} + {\rm{ }}21\)
\(\Leftrightarrow y{\rm{ }} = {\rm{ }} - 3{{\left( {x{\rm{ }} + {\rm{ }}2} \right)}^{2}} + {\rm{ }}21 \)
Đồ thị hàm số \(y{\rm{ }} = {\rm{ }} - 3{{\left( {x{\rm{ }} + {\rm{ }}2} \right)}^{2}} + {\rm{ }}21 \) có được nhờ tịnh tiến liên tiếp đồ thị hàm số \(y = -3x^2\) sang trái 2 đơn vị, rồi lên trên 21 đơn vị.
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học