Giải bài 68 trang 61 SGK giải tích 12 nâng cao

Chứng minh các bất đẳng thức sau:

Bài 68. Chứng minh các bất đẳng thức sau:

a) \(\tan x > x,\,\forall x \in \left( {0;{\pi  \over 2}} \right)\);

b) \(\tan x > x + {{{x^3}} \over 3},\,\forall x \in \left( {0;{\pi  \over 2}} \right)\)

Hướng dẫn: a) Chứng minh rằng hàm số: \(f\left( x \right) = \tan x - x\) đồng biến trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\)

Giải

a) Hàm số \(f\left( x \right) = \tan x - x\) liên tục trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\) và có đạo hàm \(f'\left( x \right) = {1 \over {{{\cos }^2}x}} - 1 > 0\,\,\forall x\left( {0;{\pi  \over 2}} \right)\)

Do đó hàm số \(f\) đồng biến trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\) 

Từ đó: \(f\left( x \right) > f\left( 0 \right)\forall x \in \left( {0;{\pi  \over 2}} \right) \Leftrightarrow \tan x - x > 0\forall x \in \left( {0;{\pi  \over 2}} \right)\)

b) Hàm số \(f\left( x \right) = \tan x - x - {{{x^3}} \over 3}\) liên tục trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\) và có đạo hàm \(f'\left( x \right) = {1 \over {{{\cos }^2}x}} - 1 = {\tan ^2}x - {x^2} > 0\,\,\forall x\left( {0;{\pi  \over 2}} \right)\) (suy ra từ a)).

Do đó hàm số \(f\) đồng biến trên nửa khoảng \(\left[ {0;{\pi  \over 2}} \right)\) và khi đó 

\(f\left( x \right) = f\left( 0 \right) = 0\,\,\forall x \in \left( {0;{\pi  \over 2}} \right) \Rightarrow \tan x > x + {{{x^3}} \over 3}\,\,\forall x \in \left( {0;{\pi  \over 2}} \right)\)

Các bài học liên quan
Bài 73 trang 62 SGK  giải tích 12 nâng cao
Bài 74 trang 62 SGK  giải tích 12 nâng cao
Bài 75 trang 62 SGK  giải tích 12 nâng cao
Bài 77 trang 62 SGK  giải tích 12 nâng cao
Bài 78 trang 62 SGK  giải tích 12 nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật