Giải bài 78 trang 62 SGK giải tích 12 nâng cao
a) Vẽ đồ thị (P) của hàm số và đồ thị (H) của hàm số . b) Tìm giao điểm của hai đường cong (P) và (H). Chứng minh rằng hia đường cong đó có tiếp tuyến chung tại giao điểm của chúng. c) Xác định các khoảng trên đó (P) nằm phía trên hoặc phía dưới (H).
- Bài học cùng chủ đề:
- Bài 79 trang 62 SGK giải tích 12 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 38.
a) Vẽ đồ thị (P) của hàm số \(y = {x^2} - x + 1\) và đồ thị (H) của hàm số \(y = {1 \over {x + 1}}\).
b) Tìm giao điểm của hai đường cong (P) và (H). Chứng minh rằng hia đường cong đó có tiếp tuyến chung tại giao điểm của chúng.
c) Xác định các khoảng trên đó (P) nằm phía trên hoặc phía dưới (H).
Giải
a) Đồ thị
b) Hoành độ giao điể của parabol (P) và hypebol (H) là nghiệm của phương trình:
\({x^2} - x + 1 = {1 \over {x + 1}} \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - x + 1} \right) = 1\) (vì x = -1 không là nghiệm của phương trình)
\( \Leftrightarrow {x^3} + 1 = 1 \Leftrightarrow x = 0;\,\left( {y\left( 0 \right) = 1} \right)\)
Giao điểm của (P) và (H) là A(0;1)
Đặt \(f\left( x \right) = {x^2} - x + 1;\,g\left( x \right) = {1 \over {x + 1}}\)
Ta có: \(f'\left( x \right) = 2x - 1;\,g'\left( x \right) = - {1 \over {{{\left( {x + 1} \right)}^2}}}\)
\(f'\left( 0 \right) = g'\left( x \right) = - 1\)
Suy ra (P) và (H) có tiếp tuyến chung tại A nên (P) và (H) tiếp xúc nhau tại điểm A.
c) Xét hiệu \(f\left( x \right) - g\left( x \right) = {x^2} - x +1 - {1 \over {x + 1}} = {{{x^3}} \over {x + 1}}\)
Bảng xét dấu f(x) – g(x)
Trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0; + \infty } \right)\) (P) nằm phía trên (H). Trên khoảng \(\left( { - 1;0} \right)\) (P) nằm phía dưới (H).
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học