Giải bài 30 trang 27 SGK Đại số và Giải tích 12 Nâng cao
Cho hàm số a) Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của phương trình b) Viết công thức chuyển hệ tọa độ trong phép định tiến theo vectơ và viết phương trình của đường cong (C) đối với hệ tọa độ IXY. Từ đó suy ra rằng I là tâm đối xứng của đường cong (C). c) Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hệ tọa độ Oxy. Chứng minh rằng trên khoảng đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng đ
- Bài học cùng chủ đề:
- Bài 31 trang 27 SGK Đại số và Giải tích 12 Nâng cao
- Bài 32 trang 28 SGK Đại số và Giải tích 12 Nâng cao
- Bài 33 trang 28 SGK Đại số và Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 30. Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 1\).
a) Xác định điểm \(I\) thuộc đồ thị \((C)\) của hàm số đã cho biết rằng hoành độ của điểm \(I\) là nghiệm của phương trình \(f''\left( x \right) = 0\).
b) Viết công thức chuyển hệ tọa độ trong phép định tiến theo vectơ \(\overrightarrow {OI} \) và viết phương trình của đường cong \((C)\) đối với hệ tọa độ \(IXY\). Từ đó suy ra rằng \(I\) là tâm đối xứng của đường cong \((C)\).
c) Viết phương trình tiếp tuyến của đường cong \((C)\) tại điểm \(I\) đối với hệ tọa độ \(Oxy\). Chứng minh rằng trên khoảng \(\left( { - \infty ;1} \right)\) đường cong \((C)\) nằm phía dưới tiếp tuyến tại \(I\) của \((C)\) và trên khoảng \(\left( {1; + \infty } \right)\) đường cong \((C)\) nằm phía trên tiếp tuyến đó.
Hướng dẫn. Trên khoảng \(\left( { - \infty ;1} \right)\), đường cong \((C)\) nằm phía dưới tiếp tuyến \(y = ax + b\) nếu \(f\left( x \right) < ax + b\) với mọi \(x<1\).
Giải
a) \(f'\left( x \right) = 3{x^2} - 6x;f''\left( x \right) = 6x - 6\)
\(f''\left( x \right) = 0 \Leftrightarrow x = 1;f\left( 1 \right) = - 1\)
Vậy \(I\left( {1; - 1} \right)\)
b) Công thức chuyển trục tọa độ tịnh tiến theo \(\overrightarrow {OI} \) là
\(\left\{ \matrix{
x = X + 1 \hfill \cr
y = Y - 1 \hfill \cr} \right.\)
Phương trình đường cong \((C)\) đối với hệ tọa độ \(IXY\) là
\(\eqalign{
& Y - 1 = {\left( {X + 1} \right)^3} - 3{\left( {X + 1} \right)^2} + 1 \cr
& \,\,\,\,\,\,\,\,\,\,\, = {X^3} + 3{X^2} + 3X + 1 - 3{X^2} - 6X - 3 + 1 \Leftrightarrow Y = {X^3} - 3X \cr} \)
Vì đây là một hàm số lẻ nên đồ thị \((C)\) của nó nhận gốc tọa độ \(I\) làm tâm đối xứng.
c) Phương trình tiếp tuyến của đường cong \((C)\) tại điểm \(I\) đối với hệ trục tọa độ \(Oxy\) là: \(y - {y_1} = f'\left( {{x_1}} \right)\left( {x - {x_1}} \right)\,\, \Leftrightarrow y + 1 = - 3\left( {x - 1} \right) \Leftrightarrow y = - 3x + 2\)
Đặt \(g\left( x \right) = - 3x + 2\)
\(f\left( x \right) - g\left( x \right) = {x^3} - 3{x^2} + 1 - \left( { - 3x + 2} \right) = {x^3} - 3{x^2} + 3x - 1 = {\left( {x - 1} \right)^3}\)
Vì \(f\left( x \right) - g\left( x \right)<0\) với \(x<1\)
Do đó trên khoảng \(\left( { - \infty ;1} \right)\), \((C)\) nằm phía dưới tiếp tuyến tại \(I\) của \((C)\) và trên khoảng \(\left( {1; + \infty } \right)\), \((C)\) nằm phía trên tiếp tuyến đó.
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học