Giải bài 24 trang 23 sách Đại số và Giải tích 12 Nâng cao
Cho parabol (P): y = x2 và điểm A (-3;0). Xác định điểm M thuộc parabol (P) sao cho khoảng cách AM là ngắn nhất và tìm khoảng cách ngắn nhất đó.
- Bài học cùng chủ đề:
- Bài 25 trang 23 SGK Đại số và Giải tích 12 Nâng cao
- Bài 26 trang 23 SGK Đại số và Giải tích 12 Nâng cao
- Bài 27 trang 24 SGK Đại số và Giải tích 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 24. Cho parabol \((P): y = x^2\) và điểm \(A (-3;0)\). Xác định điểm \(M\) thuộc parabol \((P)\) sao cho khoảng cách \(AM\) là ngắn nhất và tìm khoảng cách ngắn nhất đó.
Giải
Gọi \(M\left( {x;{x^2}} \right)\)
Ta có: \(A{M^2} = {(x + 3)^2} + {x^4} = {x^4} + {x^2} + 6x + 9\)
\(AM\) đạt giá trị nhỏ nhất khi và chỉ khi \(f(x) = {x^4} + {x^2} + 6x + 9\) đạt giá trị nhỏ nhất
Ta có: \(f'(x) = 4{x^3} + 2x + 6 = 2(x + 1)(2{x^2} - 2x + 3)\)
\(f'\left( x \right) = 0 \Leftrightarrow x = - 1;f\left( { - 1} \right) = 5\)
\(f\) đạt giá trị nhỏ nhất tại điểm \(x = -1\), giá trị nhỏ nhất là \(f (-1) = 5\).
\(AM\) đạt giá trị nhỏ nhất khi \(M\) ở vị trí \({M_0} (-1; 1)\) khi đó \(AM_0=\sqrt 5\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học