Giải bài 75 trang 62 SGK giải tích 12 nâng cao
Cho hàm số: a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 2. b) Tìm các giá trị của m sao cho đồ thị của hàm số cắt trục hoành tại bốn điểm, tạo thành ba đoạn thẳng có độ dài bằng nhau.
- Bài học cùng chủ đề:
- Bài 76 trang 62 SGK giải tích 12 nâng cao
- Bài 77 trang 62 SGK giải tích 12 nâng cao
- Bài 78 trang 62 SGK giải tích 12 nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 75. Cho hàm số: \(y = {x^4} - \left( {m + 1} \right){x^2} + m\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 2.
b) Tìm các giá trị của m sao cho đồ thị của hàm số cắt trục hoành tại bốn điểm, tạo thành ba đoạn thẳng có độ dài bằng nhau.
Giải
a) Với \(m=2\) hàm số đã cho có dạng: \(y={x^4} - 3{x^2} + 3\)
Tập xác định: \(D=\mathbb R\)
\(\eqalign{
& y' = 4{x^3} - 6x \cr
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = {{\sqrt 6 } \over 2} \hfill \cr
x = - {{\sqrt 6 } \over 2} \hfill \cr} \right. \cr} \)
Hàm số đồng biến trên khoảng: \(\left( { - {{\sqrt 6 } \over 2};0} \right)\) và \(\left( {{{\sqrt 6 } \over 2}; + \infty } \right)\)
Hàm số nghịch biến trên khoảng: \(\left( { - \infty ; - {{\sqrt 6 } \over 2}} \right)\) và \(\left( {0;{{\sqrt 6 } \over 2}} \right)\)
Cực trị:
Hàm số đạt cực đại tại \(x=0;\,\,y(0)=2\)
Hàm số đạt cực tiểu tại \(x = {{\sqrt 6 } \over 2}\) và \(x = - {{\sqrt 6 } \over 2}\), \(y\left( { \pm {{\sqrt 6 } \over 2}} \right) = - {1 \over 4}\)
Giới hạn: \(\mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \)
Bảng biến thiên:
Đồ thị:
Đồ thi cắt tung độ tại điểm \((0;2)\)
Đồ thị cắt hoành độ tại 4 điểm: \(\left( { - \sqrt 2 ;0} \right),\left( { - 1;0} \right)\left( {1;0} \right),\left( {\sqrt 2 ;0} \right)\)
Đồ thị hàm số là hàm chẵn nhận trục Oy làm trục đối xứng.
b) Hoành độ giao điểm của đường cong (C) và trục là nghiệm phương trình
\({x^4} - \left( {m + 1} \right){x^2} + m = 0\,\,\,\left( 1 \right)\,\,\, \Leftrightarrow \left[ \matrix{
{x^2} = 1 \hfill \cr
{x^2} = m \hfill \cr} \right.\)
(1) có 4 nghiệm phân biệt khi và chỉ khi m>0 và \(m \ne 1\)
Khi đó (1) có 4 nghiệm: \(x = - 1;\,x = 1;\,x = - \sqrt m ;\,x = \sqrt m \)
* \( - \sqrt m < - 1 < 1 < \sqrt m \)
(C) cắt trục tại 4 điểm tạo thành ba đoạn thẳng bằng nhau khi \(\sqrt m - 1 = 1 - \left( { - 1} \right) = 2 \Leftrightarrow m = 9\)
* \( - 1 < - \sqrt m < \sqrt m < 1\)
(C) cắt trục hoành tại 4 điểm tạo thành ba đoạn thẳng bằng nhau khi \(1 - \sqrt m = \sqrt m - \left( { - \sqrt m } \right) = 2\sqrt m \)
Vậy m= 9 hoặc \(m = {1 \over 9}\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học