Giải bài 5 trang 127 SGK Hình học 10 nâng cao
Tìm liên hệ giữa để hai đường thẳng AB’ và A’B cắt nhau. Khi đó hãy tìm tọa độ giao điểm I của hai đường thẳng đó.
- Bài học cùng chủ đề:
- Bài 6 trang 127 SGK Hình học 10 nâng cao
- Bài 7 trang 127 SGK Hình học 10 nâng cao
- Bài 8 trang 128 SGK Hình học 10 nâng cao
- Ngữ pháp tiếng anh hay nhất
Trong mặt phẳng tọa độ Oxy cho hai hình chữ nhật OACB và OA’C’B’ như hình 107. Biết \(A(a\,;\,0)\,,\,{A'}({a'}\,;\,0)\,,\,B(0\,;\,b)\,,\,{B'}(0\,;\,{b'}\,)\,\) (a, a’, b, b; là những số dương, \(a\, \ne {a'}\,,\,b\, \ne \,{b'}\)).
a) Viết phương trình các đường thẳng AB’ và A’B.
b) Tìm liện hệ giữa để hai đường thẳng AB’ và A’B cắt nhau. Khi đó hãy tìm tọa độ giao điểm I của hai đường thẳng đó.
c) Chứng minh rằng ba điểm I, C, C’ thẳng hàng.
d) Với điều kiện nào của a, a’, b, b'; thì C là trung điểm của IC’?
Giải
a) Áp dụng phương trình đường thẳng theo đoạn chắn, ta có
\(A{B'}:\,\,{x \over a} + {y \over {{b'}}} = 1\,\,;\,\,\,\,{A'}B:\,\,{x \over {{a'}}} + {y \over b} = 1\)
b) A'B và AB' cắt nhau \( \Leftrightarrow \,\,{a \over {{a'}}} \ne {{{b'}} \over b}\,\, \Leftrightarrow \,\,ab - {a'}{b'} \ne 0\) . Tọa độ giao điểm I của A'B và AB' là nghiệm của hệ phương trình:
\(\left\{ \matrix{
{b'}x + ay = a{b'} \hfill \cr
bx + {a'}y = {a'}b \hfill \cr} \right.\,\, \Leftrightarrow \,\,\left\{ \matrix{
x = {{a{a'}\left( {{b'} - b} \right)} \over {{a'}{b'} - ab}} \hfill \cr
y = {{b{b'}\left( {{a'} - a} \right)} \over {{a'}{b'} - ab}} \hfill \cr} \right.\)
Vậy \(I\left( {{{a{a'}\left( {{b'} - b} \right)} \over {{a'}{b'} - ab}};\,\,{{b{b'}\left( {{a'} - a} \right)} \over {{a'}{b'} - ab}}} \right)\)
c) Ta có \(C(a\,,\,b)\,;\,\,{C'}({a'}\,,\,{b'})\)
\(\overrightarrow {CI} = \left( { - {{ab\left( {{a'} - a} \right)} \over {{a'}{b'} - ab}}; - {{ab\left( {{b'} - b} \right)} \over {{a'}{b'} - ab}}} \right) = - {{ab} \over {{a'}{b'} - ab}}\overrightarrow {C{C'}} \)
Suy ra C, C', I thẳng hàng.
d) C là trung điểm IC' .
\( \Leftrightarrow \,\,\overrightarrow {CI} + \overrightarrow {C{C'}} = \overrightarrow 0 \,\, \)
\(\Leftrightarrow \,\,\overrightarrow {CI} = - \overrightarrow {C{C'}} \,\, \Leftrightarrow \,\,{{ab} \over {{a'}{b'} - ab}} = 1\,\, \Leftrightarrow \,\,{a'}{b'} = 2ab\)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học