Giải bài 41 trang 127 SGK Đại số 10 nâng cao

Giải và biện luận các hệ bất phương trình

Giải và biện luận các hệ bất phương trình

a) 

\(\left\{ \matrix{
(x - \sqrt 5 )(\sqrt 7 - 2x) > 0 \hfill \cr
x - m \le 0 \hfill \cr} \right.\)

b)

\(\left\{ \matrix{
{2 \over {x - 1}} < {5 \over {2x - 1}} \hfill \cr
x - m \ge 0 \hfill \cr} \right.\)

Đáp án

a) Ta có bảng xét dấu:

Vậy \((x - \sqrt 5 )(\sqrt 7  - 2x) > 0 \Leftrightarrow {{\sqrt 7 } \over 2} < x < \sqrt 5 \)

Ta có: \({S_1} = ({{\sqrt 7 } \over 2};\sqrt 5 )\)

Bất phương trình thứ hai có nghiệm \(x ≤ m\).

Ta có: \({S_2} = (-∞; m]\),

Do đó:

+ Nếu \(m \le {{\sqrt 7 } \over 2}\) thì tập nghiệm là S = S1 ∩ S2 = Ø

+ Nếu \({{\sqrt 7 } \over 2} \le m < \sqrt 5 \) thì tập nghiệm là \(S = {S_1} \cap {S_2} = ({{\sqrt 7 } \over 2},m)\)

+ Nếu \(m \ge \sqrt 5 \) thì tập nghiệm là \(S = {S_1} \cap {S_2} = ({{\sqrt 7 } \over 2}\sqrt 5 )\)

b) Ta có:

\({2 \over {x - 1}} < {5 \over {2x - 1}} \Leftrightarrow {{2(2x - 1) - 5(x - 1)} \over {(x - 1)(2x - 1)}} < 0 \Leftrightarrow {{x - 3} \over {(x - 1)(2x - 1)}} > 0\)

Bằng cách lập bảng xét dấu vế trái, ta có:

\({2 \over {x - 1}} < {5 \over {2x - 1}} \Leftrightarrow \left[ \matrix{
{1 \over 2} < x < 1 \hfill \cr
x > 3 \hfill \cr} \right.\)

Ta có: \({S_1} = ({1 \over 2};1) \cup (3, + \infty )\)

Tập nghiệm của bất phương trình thứ hai là: S2 = [m, +∞ )

Do đó:

+ Nếu \(m \le {1 \over 2}\) thì tập nghiệm là  \({S_1} = ({1 \over 2};1) \cup (3, + \infty )\)

+ Nếu \({1 \over 2} < m < 1\) thì tập nghiệm là \(S = {\rm{[m, 1)}} \cup {\rm{(3, + }}\infty {\rm{)}}\)

+ Nếu \(1≤ m ≤ 3\) thì tập nghiệm là \(S = (3, +∞ )\)

+ Nếu \(m > 3\) thì tập nghiệm là \(S = [m; +∞ )\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật