Giải bài 29 trang 96 SGK Hình học 10 Nâng cao
Tìm tọa độ các giao điểm của hai đường tròn sau đây
Tìm tọa độ các giao điểm của hai đường tròn sau đây
\(\eqalign{
& (C):{x^2} + {y^2} + 2x + 2y - 1 = 0, \cr
& (C'):{x^2} + {y^2} - 2x + 2y - 7 = 0. \cr} \)
Giải
\(\eqalign{
& (C):{x^2} + {y^2} + 2x + 2y - 1 = 0\,\,\,\,(\,1\,) \cr
& (C'):{x^2} + {y^2} - 2x + 2y - 7 = 0\,\,\,(2) \cr} \)
Lấy (1) trừ (2) ta được \(4x + 6 = 0 \Leftrightarrow x = - {3 \over 2}.\)
Thay \(x = - {3 \over 2}\) vào (1) ta được:
\({9 \over 4} + {y^2} - 3 + 2y - 1 = 0 \Leftrightarrow {y^2} + 2y - {7 \over 4} = 0\)
\(\Leftrightarrow y = - 1 \pm {{\sqrt {11} } \over 2}\)
Tọa độ hai giao điểm của (C) và (C’) là:
\(\left( { - {3 \over 2}; - 1 - {{\sqrt {11} } \over 2}} \right);\,\,\,\left( { - {3 \over 2}; - 1 + {{\sqrt {11} } \over 2}} \right)\)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học