Giải bài 38 trang 109 SGK Hình học 10 Nâng cao

Chứng minh rằng:

Cho đường tròn (C) tâm \({F_1}\) , bán kính R và một điểm \({F_2}\)  ở ngoài (C). Chứng minh rằng tập hợp tâm các đường tròn đi qua \({F_2}\) , tiếp xúc với (C) là một đường hypebol. Viết phương trình chính tắc của hypebol đó.

Giải

 

Gọi M là tâm đường tròn đi qua \({F_2}\) và tiếp xúc với (C)

Ta có: \(|M{F_1} - M{F_2}| = R = 2a\)

Vậy tập hợp các điểm M là đường hypebol (H) có \(a = {R \over 2},c = {{{F_1}{F_2}} \over 2}\)

\( \Rightarrow {b^2} = {c^2} - {a^2} = {{{F_1}{F_2}^2 - {R^2}} \over 4}\) 

Phương trình chính tắc của (H) là:

\({{{x^2}} \over {{{\left( {{R \over 2}} \right)}^2}}} - {{{y^2}} \over {{{\left( {{{\sqrt {{F_1}{F_2}^2 - {R^2}} } \over 2}} \right)}^2}}} = 1.\)

Các bài học liên quan
Bài 45 trang 112 SGK Hình học 10 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật