Giải bài 39 trang 109 SGK Hình học 10 Nâng cao
Viết phương trình chính tắc của hypebol (H) trong mỗi trường hợp sau
- Bài học cùng chủ đề:
- Bài 40 trang 109 SGK Hình học 10 Nâng cao
- Bài 41 trang 109 SGK Hình học 10 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Viết phương trình chính tắc của hypebol (H) trong mỗi trường hợp sau
a) (H) có một tiêu điểm là (5, 0) và độ dài trục thực bằng 8;
b) (H) có tiêu cự bằng \(2\sqrt 3 \) , một đường tiệm cận là \(y = {2 \over 3}x;\)
c) (H) có tâm sai \(e = \sqrt 5 \) và đi qua điểm \((\sqrt {10} ;6).\)
Giải
a) Ta có: \(c = 5,a = 4 \Rightarrow {b^2} = {c^2} - {a^2} = 9 \Rightarrow b = 3\)
Vậy (H) có phương trình là: \({{{x^2}} \over {16}} - {{{y^2}} \over 9} = 1.\)
b) Ta có: \(c = \sqrt 3 ;{b \over a} = {2 \over 3} \Rightarrow b = {{2a} \over 3}\)
\({c^2} = {a^2} + {b^2} = 3 \Rightarrow {a^2} + {{4{a^2}} \over 9} = 3\)
\(\Rightarrow {a^2} = {{27} \over {13}};{b^2} = 3 - {{27} \over {13}} = {{12} \over {13}}.\)
Vậy (H) có phương trình là: \({{{x^2}} \over {{{27} \over {13}}}} - {{{y^2}} \over {{{12} \over {13}}}} = 1.\)
c) Ta có: \(e = {c \over a} = \sqrt 5 \Rightarrow {c^2} = 5{a^2} \Rightarrow {b^2} = 4{a^2}\,\,\,\,\,(1)\)
Giả sử: \((H):{{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1\)
Vì \(M\left( {\sqrt {10} ;6} \right) \in (H)\) nên: \({{10} \over {{a^2}}} - {{36} \over {{b^2}}} = 1 \Leftrightarrow 10{b^2} - 36{a^2} = {a^2}{b^2}\,\,\,(2)\)
Thay (1) vào (2) ta được: \(40{a^2} - 36{a^2} = {a^2}\left( {4{a^2}} \right) \Rightarrow {a^2} = 1;{b^2} = 4\)
Vậy (H) có phương trình là: \({{{x^2}} \over 1} - {{{y^2}} \over 4} = 1.\)
- Chương i. mệnh đề - tập hợp
- Chương ii. hàm số bậc nhất và bậc hai
- Chương iii. phương trình và hệ phương trình
- Chương iv. bất phương trình và hệ bất phương trình
- Chương v. thống kê
- Chương vi. góc lượng giác và công thức lượng giác
- Ôn tập cuối năm đại số
- Chương i. vectơ
- Chương ii. tích vô hướng của hai vectơ và ứng dụng
- Chương iii. phương pháp tọa độ trong mặt phẳng
- Ôn tập cuối năm hình học