Giải bài 39 trang 109 SGK Hình học 10 Nâng cao

Viết phương trình chính tắc của hypebol (H) trong mỗi trường hợp sau

Viết phương trình chính tắc của hypebol (H) trong mỗi trường hợp sau

a) (H) có một tiêu điểm là (5, 0) và độ dài trục thực bằng 8;

b) (H) có tiêu cự bằng \(2\sqrt 3 \) , một đường tiệm cận là \(y = {2 \over 3}x;\)

c) (H) có tâm sai \(e = \sqrt 5 \) và đi qua điểm \((\sqrt {10} ;6).\)

Giải

a) Ta có: \(c = 5,a = 4 \Rightarrow {b^2} = {c^2} - {a^2} = 9 \Rightarrow b = 3\)

Vậy (H) có phương trình là: \({{{x^2}} \over {16}} - {{{y^2}} \over 9} = 1.\) 

b) Ta có: \(c = \sqrt 3 ;{b \over a} = {2 \over 3} \Rightarrow b = {{2a} \over 3}\)

\({c^2} = {a^2} + {b^2} = 3 \Rightarrow {a^2} + {{4{a^2}} \over 9} = 3\)

\(\Rightarrow {a^2} = {{27} \over {13}};{b^2} = 3 - {{27} \over {13}} = {{12} \over {13}}.\)               

Vậy (H) có phương trình là: \({{{x^2}} \over {{{27} \over {13}}}} - {{{y^2}} \over {{{12} \over {13}}}} = 1.\)

c) Ta có: \(e = {c \over a} = \sqrt 5  \Rightarrow {c^2} = 5{a^2} \Rightarrow {b^2} = 4{a^2}\,\,\,\,\,(1)\)

Giả sử: \((H):{{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1\)

Vì \(M\left( {\sqrt {10} ;6} \right) \in (H)\) nên: \({{10} \over {{a^2}}} - {{36} \over {{b^2}}} = 1 \Leftrightarrow 10{b^2} - 36{a^2} = {a^2}{b^2}\,\,\,(2)\)

Thay (1) vào (2) ta được: \(40{a^2} - 36{a^2} = {a^2}\left( {4{a^2}} \right) \Rightarrow {a^2} = 1;{b^2} = 4\)

Vậy (H) có phương trình là: \({{{x^2}} \over 1} - {{{y^2}} \over 4} = 1.\)

Các bài học liên quan
Bài 45 trang 112 SGK Hình học 10 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 10 mới cập nhật