Giải bài 10 trang 190 SGK Đại số và Giải tích 12 Nâng cao

Chứng minh rằng

Bài 10

Chứng minh rằng với mọi số phức \(z \ne 1\), ta có: \(1 + z + {z^2} + ... + {z^9} = {{{z^{10}} - 1} \over {z - 1}}\).

Giải

Ta có: \(\left( {1 + z + {z^2} + ... + {z^9}} \right)\left( {z - 1} \right) = z + {z^2} + ... + {z^{10}} - \left( {1 + z + {z^2} + ... + {z^9}} \right) = {z^{10}} - 1\)

Vì \(z \ne 1\) nên chia hai vế cho \(z - 1\) ta được: \(1 + z + {z^2} + ... + {z^9} = {{{z^{10}} - 1} \over {z - 1}}\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật