Giải bài 13 trang 191 SGK Đại số và Giải tích 12 Nâng cao

Giải các phương trình sau (với ẩn z)

Bài 13

Giải các phương trình sau (với ẩn z)

a) \(iz + 2 - i = 0\);                                    

b) \(\left( {2 + 3i} \right)z = z - 1\);

c) \(\left( {2 - i} \right)\overline z  - 4 = 0\);                              

d) \(\left( {iz - 1} \right)\left( {z + 3i} \right)\left( {\overline z  - 2 + 3i} \right) = 0\);

e) \({z^2} + 4 = 0\);

Giải

a) \(iz + 2 - i = 0 \Leftrightarrow iz = i - 2 \Leftrightarrow z = {{ - 2 + i} \over i} = {{\left( { - 2 + i} \right)i} \over { - 1}} \Leftrightarrow z = 1 + 2i\)

b) \(\left( {2 + 3i} \right)z = z - 1 \Leftrightarrow \left( {1 + 3i} \right)z =  - 1\)

                              \( \Leftrightarrow z = {{ - 1} \over {1 + 3i}} = {{ - 1 + 3i} \over {\left( {1 + 3i} \right)\left( {1 - 3i} \right)}} = {{ - 1 + 3i} \over {10}} =  - {1 \over {10}} + {3 \over {10}}i\)

c) \(\left( {2 - i} \right)\overline z  - 4 = 0 \Leftrightarrow \left( {2 + i} \right)z = 4 \Leftrightarrow z = {4 \over {2 + i}} = {{4\left( {2 - i} \right)} \over 5} \Leftrightarrow z = {8 \over 5} - {4 \over 5}i\)

d) \(\left( {iz - 1} \right)\left( {z + 3i} \right)\left( {\overline z  - 2 + 3i} \right) = 0 \Leftrightarrow \left[ \matrix{  iz - 1 = 0 \hfill \cr  z + 3i = 0 \hfill \cr  \overline z  - 2 + 3i = 0 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{  z = {1 \over i} =  - i \hfill \cr  z =  - 3i \hfill \cr  z = 2 + 3i \hfill \cr}  \right.\)

Vậy tập nghiệm phương trình là \(S = \left\{ { - i, - 3i,2 + 3i} \right\}\)

e) \({z^2} + 4 = 0 \Leftrightarrow {z^2} - 4{i^2}=0 \Leftrightarrow \left( {z - 2i} \right)\left( {z + 2i} \right) = 0 \Leftrightarrow z = 2i\text{ hoặc } z =  - 2i\).

Vậy \(S = \left\{ {2i, - 2i} \right\}\)

Các bài học liên quan

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật