Giải bài 9 trang 81 SGK Hình học 12 Nâng cao
Xét sự đồng phẳng của ba vectơ trong mỗi trường hợp sau:
- Bài học cùng chủ đề:
- Bài 10 trang 81 SGK Hình học 12 Nâng cao
- Bài 11 trang 81 SGK Hình học 12 Nâng cao
- Bài 12 trang 82 SGK Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 9
Xét sự đồng phẳng của ba vectơ \(\overrightarrow u ,\overrightarrow v \) và \(\overrightarrow {\rm{w}} \) trong mỗi trường hợp sau:
a) \(\overrightarrow u \left( {4;3;4} \right)\,,\,\overrightarrow v \left( {2; - 1;2} \right)\,;\,\overrightarrow {\rm{w}} \left( {1;2;1} \right)\)
b) \(\overrightarrow u \left( {1; - 1;1} \right)\,;\,\overrightarrow v \left( {0;1;2} \right)\,;\,\overrightarrow {\rm{w}} \left( {4;2;3} \right)\)
c) \(\overrightarrow u \left( {4;2;5} \right)\,;\,\overrightarrow v \left( {3;1;3} \right)\,;\,\overrightarrow {\rm{w}} \left( {2;0;1} \right)\)
Giải
a) Ta có:
\(\eqalign{
& \left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {\left| \matrix{
3\,\,\,\,\,\,4 \hfill \cr
- 1\,\,\,2 \hfill \cr} \right|;\left| \matrix{
4\,\,\,\,\,4 \hfill \cr
2\,\,\,\,\,\,2 \hfill \cr} \right|;\left| \matrix{
4\,\,\,\,\,\,3 \hfill \cr
2\,\,\,\,\,\,\, - 1 \hfill \cr} \right|} \right) = \left( {10;0; - 10} \right) \cr
& \Rightarrow \left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} = 10.1 + 0.2 - 10.1 = 0 \cr} \)
Do đó \(\overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.
b) \(\left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} \ne 0 \Rightarrow \overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) không đồng phẳng.
c) \(\left[ {\overrightarrow u ,\overrightarrow v } \right].\overrightarrow {\rm{w}} = 0 \Rightarrow \overrightarrow u ,\overrightarrow v ,\overrightarrow {\rm{w}} \) đồng phẳng.
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học