Giải bài 16 trang 89 SGK Hình học 12 Nâng cao

Xét vị trí tương đối của mỗi cặp mật phẳng cho bởi các phương trình sau:

Bài 16. Xét vị trí tương đối của mỗi cặp mật phẳng cho bởi các phương trình sau:

a) \(x + 2y - z + 5 = 0\) và \(2x + 3y - 7z - 4 = 0\).
b) \(z - 2y + z - 3 = 0\) và \(2x - y + 4z - 2 = 0\).
c) \(x + y + z - 1 = 0\) và \(2x + 2y + 2z + 3 = 0\).
d) \(3x - 2y + 3z + 5 = 0\) và \(9x - 6y - 9z - 5 = 0\).
e) \(x - y + 2z - 4 = 0\) và \(10x - 10y + 20z - 40 = 0\).

Giải

a) Ta có \(1:2:\left( { - 1} \right) \ne 2:3:\left( { - 7} \right)\) nên hai mặt phẳng đã cho cắt nhau.
b) \(1:\left( { - 2} \right):1 \ne 2:\left( { - 1} \right):4\) nên hai mặt phẳng cắt nhau.
c) \({1 \over 2} = {1 \over 2} = {1 \over 2} \ne {{ - 1} \over 3}\) nên hai mặt phẳng song song.
d) \(3:\left( { - 2} \right):3 \ne 9:\left( { - 6} \right):\left( { - 9} \right)\)nên hai mặt phẳng cắt nhau.
e) \({1 \over {10}} = {{ - 1} \over { - 10}} = {2 \over {20}} = {{ - 4} \over { - 40}}\) nên hai mặt phẳng trùng nhau.

Các bài học liên quan
Bài 22 trang 90 SGK Hình học 12 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật