Giải bài 26 trang 102 SGK Hình học 12 Nâng cao

Viết phương trình hình chiếu vuông góc của đường thẳng trên mỗi mặt phẳng tọa độ.

Bài 26. Viết phương trình hình chiếu vuông góc của đường thẳng \(d:\,\,{{x - 1} \over 2} = {{y + 2} \over 3} = {{z - 3} \over 1}\) trên mỗi mặt phẳng tọa độ.

Giải

Đường thẳng d có phương trình tham số là:

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = - 2 + 3t \hfill \cr
z = 3 + t \hfill \cr} \right.\)

Mỗi điểm M(x; y; z) \( \in d\) có hình chiếu trên mp(Oxy) là điểm M’(x; y; 0) , d’ là hình chiếu của d trên mp(Oxy). Vậy d’ có phương trình tham số là

\(\left\{ \matrix{
x = 1 +2 t \hfill \cr
y = - 2 + 3t \hfill \cr
z = 0 \hfill \cr} \right.\)

Tương tự phương trình hình chiếu của d trên mp(Oxz), mp(Oyz) lần lượt là:

\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = 0 \hfill \cr
z = 3 + t \hfill \cr} \right.\) và 

\(\left\{ \matrix{
x = 0 \hfill \cr
y = - 2 + 3t \hfill \cr
z = 3 + t \hfill \cr} \right.\)

Các bài học liên quan
Bài 31 trang 103 SGK Hình học 12 Nâng cao
Bài 32 trang 104 SGK Hình học 12 Nâng cao
Bài 33 trang 104 SGK Hình học 12 Nâng cao
Bài 34 trang 104 SGK Hình học 12 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật