Giải bài 11 trang 81 SGK Hình học 12 Nâng cao
Cho bốn điểm A(1 ; 0 ; 0), B(0 ; 1 ; 0), C(0 ; 0 ; 1) và D(-2 ; 1 ; -2). a) Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện. b) Tính góc giữa các đường thẳng chứa các cạnh đối của tứ diện đó. c) Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A.
- Bài học cùng chủ đề:
- Bài 12 trang 82 SGK Hình học 12 Nâng cao
- Bài 13 trang 82 SGK Hình học 12 Nâng cao
- Bài 14 trang 82 SGK Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 11. Cho bốn điểm A(1 ; 0 ; 0), B(0 ; 1 ; 0), C(0 ; 0 ; 1) và D(-2 ; 1 ; -2).
a) Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện.
b) Tính góc giữa các đường thẳng chứa các cạnh đối của tứ diện đó.
c) Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A.
Giải
a) Ta có:
\(\eqalign{
& \overrightarrow {AB} = \left( { - 1;1;0} \right),\overrightarrow {AC} = \left( { - 1;0;1} \right),\overrightarrow {AD} = \left( { - 3;1; - 2} \right) \cr
& \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| \matrix{
1\,\,\,\,\,\,0 \hfill \cr
0\,\,\,\,\,1 \hfill \cr} \right|;\left| \matrix{
0\,\,\,\, - 1 \hfill \cr
1\,\,\,\,\, - 1 \hfill \cr} \right|;\left| \matrix{
- 1\,\,\,\,\,\,1 \hfill \cr
- 1\,\,\,\,\,\,\,0 \hfill \cr} \right|} \right) = \left( { - 3;1; - 2} \right) \cr
& \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} = - 3.1 + 1.1 - 2.1 = - 4 \ne 0 \cr} \)
Do đó ba vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) không đồng phẳng. Vậy A, B, C, D là 4 đỉnh của một tứ diện.
b) Ta có \(\overrightarrow {CD} = \left( { - 2;1; - 3} \right),\overrightarrow {BD} = \left( { - 2;0; - 2} \right),\overrightarrow {BC} = \left( {0; - 1;1} \right)\).
Gọi \(\alpha ,\beta ,\gamma \) lần lượt là góc tạo bởi các cặp đường thẳng AB và CD, AC và BD, AD và BC thì
\(\eqalign{
& \cos \alpha = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right| = {{\left| {2 + 1 + 0} \right|} \over {\sqrt 2 .\sqrt {14} }} = {{3\sqrt 7 } \over {14}} \cr
& \cos \beta = \left| {\cos \left( {\overrightarrow {AC} ,\overrightarrow {BD} } \right)} \right| = {{\left| {2 + 0 - 2} \right|} \over {\sqrt 2 .\sqrt 8 }} = 0 \Rightarrow AC \bot BD \cr
& \cos \gamma = \left| {\cos \left( {\overrightarrow {AD} ,\overrightarrow {BC} } \right)} \right| = {{\left| {0 - 1 - 2} \right|} \over {\sqrt 2 .\sqrt {14} }} = {{3\sqrt 7 } \over {14}} \cr} \)
c) Thể tích tứ diện ABCD là: \(V = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = {1 \over 6}\left| { - 4} \right| = {2 \over 3}\)
Gọi \({h_A}\) là đường cao của tứ diện kẻ từ đỉnh A.
Ta có:
\(\eqalign{
& V = {1 \over 3}{h_A}.{S_{BCD}} \Rightarrow {h_A} = {{3V} \over {{S_{BCD}}}} \cr
& {S_{BCD}} = {1 \over 2}\left| {\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]} \right| = \sqrt 3 \cr} \)
Vậy \({h_A} = {{3.{2 \over 3}} \over {\sqrt 3 }} = {{2\sqrt 3 } \over 3}\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học