Giải bài 13 trang 82 SGK Hình học 12 Nâng cao

Tìm toạ độ tâm và tính bán kính của mỗi mặt cầu sau đây:

Bài 13. Tìm toạ độ tâm và tính bán kính của mỗi mặt cầu sau đây :

a) \({x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\)

b) \(3{x^2} + 3{y^2} + 3{z^2} + 6x - 3y + 15z - 2 = 0\)

c) \(9{x^2} + 9{y^2} + 9{z^2} - 6x + 18y + 1 = 0\)

Giải

a) Ta có

\(\eqalign{
& {x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0 \cr
& \Leftrightarrow \left( {{x^2} - 8x + 16} \right) + \left( {{y^2} + 2y + 1} \right) + {z^2} = 16 \cr
& \Leftrightarrow {\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 16 \cr} \)

Mặt cầu có tâm \(I\left( {4; - 1;0} \right)\) và có bán kính R = 4.

b) Ta có

\(\eqalign{
& 3{x^2} + 3{y^2} + 3{z^2} + 6x - 3y + 15z - 2 = 0 \cr
& \Leftrightarrow {x^2} + {y^2} + {z^2} + 2x - y + 5z - {2 \over 3} = 0 \cr
& \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - {1 \over 2}} \right)^2} + {\left( {z + {5 \over 2}} \right)^2} = {{49} \over 6} \cr} \)

Mặt cầu có tâm \(I\left( { - 1;{1 \over 2}; - {5 \over 2}} \right)\) và có bán kính \(R = {{7\sqrt 6 } \over 6}\).

c) 

\(\eqalign{
& 9{x^2} + 9{y^2} + 9{z^2} - 6x + 18y + 1 = 0 \cr
& \Leftrightarrow {x^2} + {y^2} + {z^2} - {2 \over 3}x + 2y + {1 \over 9} = 0 \cr
& \Leftrightarrow {\left( {x - {1 \over 3}} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1 \cr} \)

Mặt cầu có tâm \(I\left( {{1 \over 3}; - 1;0} \right)\) và có bán kính R = 1.

Các bài học liên quan
Bài 18 trang 90 SGK Hình học 12 Nâng cao
Bài 22 trang 90 SGK Hình học 12 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật