Giải bài 7 trang 45 SGK Hình học 12 Nâng cao
a) Tính thể tích khối cầu ngoại tiếp hình chóp tam giác đều có cạnh đáy bằng a và chiều cao bằng h. b) Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh cùng bằng a. Gọi A’, B’, C’, D’ lần lượt là trung điểm của SA, SB, SC, SD. Chứng minh rằng các điểm A, B, C, D, A’, B’, C’, D’ cùng thuộc một mặt cầu và tính thể tích khối cầu đó.
- Bài học cùng chủ đề:
- Bài 8 trang 45 SGK Hình học 12 Nâng cao
- Bài 9 trang 46 SGK Hình học 12 Nâng cao
- Bài 10 trang 46 SGK Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 7. a) Tính thể tích khối cầu ngoại tiếp hình chóp tam giác đều có cạnh đáy bằng \(a\) và chiều cao bằng \(h\).
b) Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh cùng bằng \(a\). Gọi \(A’, B’, C’, D’\) lần lượt là trung điểm của \(SA, SB, SC, SD\). Chứng minh rằng các điểm \(A, B, C, D, A’, B’, C’, D’\) cùng thuộc một mặt cầu và tính thể tích khối cầu đó.
Giải
a)
Gọi \(H\) là tâm của tam giác đều \(ABC\). \(SH\) là đường cao của hình chóp đều \(S.ABC\) nên \(SH\) là trục của tam giác \(ABC\).
Trong mặt phẳng \((SAH)\) gọi \(O\) là giao điểm của đường trung trực \(SA\) với \(SH\) thì \(O\) là tâm của mặt cầu ngoại tiếp hình chóp và bán kính của mặt cầu là \(R = SO\).
Gọi \(I\) là trung điểm của \(SA\) thì tứ giác \(AHOI\) nội tiếp nên:
\(SO.SH = SI.SA \Rightarrow SO = {{S{A^2}} \over {2SH}} = {{S{A^2}} \over {2h}}\)
Mà \(S{A^2} = S{H^2} + A{H^2} = {h^2} + {\left( {{{a\sqrt 3 } \over 3}} \right)^2} = {{{a^2} + 3{h^2}} \over 3}\)
Từ đó suy ra \(R = SO = {{{a^2} + 3{h^2}} \over {6h}}\)
Vậy thể tích khối cầu cần tìm là \(V = {{\pi {{\left( {{a^2} + 3{h^2}} \right)}^3}} \over {162{h^3}}}\)
b)
Gọi \(SH\) là đường cao của hình chóp đều \(S.ABCD\) thì \(H\) là tâm của hình vuông \(ABCD\) và \(SH\) đi qua tâm \(H’\) của hình vuông \(A’B’C’D’\).
Mọi điểm nằm trên \(SH\) đều cách đều bốn điểm \(A’, B’, C’, D’\). Trên đường thẳng \(SH\), ta xác định điểm \(O\) sao cho \(OA = OA’\) thì \(O\) cách đều tám điểm \(A, B, C, D, A’, B’, C’, D’\) tức là tám điểm đó nằm trên mặt cầu tâm \(O\), bán kính \(R = OA\). Điểm \(O\) là giao điểm của đường thẳng \(SH\) và mặt phẳng trung trực của đoạn thẳng \(AA’\).
Ta có: \(2{a^2} = A{C^2} = S{A^2} + S{C^2}\) nên tam giác vuông cân tại S suy ra \(\widehat {ASO} = {45^0}\) do đó ASIO vuông cân tại I và \(IS = IO = {{3a} \over 4}\).
Từ đó suy ra \(R = OA = \sqrt {O{I^2} + I{A^2}} = \sqrt {{{9{a^2}} \over {16}} + {{{a^2}} \over {16}}} = {{a\sqrt {10} } \over 4}\)
Vậy thể tích khối cầu cần tìm là: \(V = {4 \over 3}\pi {\left( {{{a\sqrt {10} } \over 4}} \right)^3} = {{5\pi {a^3}\sqrt {10} } \over {24}}\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học