Giải bài 20 trang 28 SGK Hình học 12 Nâng cao
Cho khối lăng trụ tam giác ABC.A'B'C' có đáy là tam giác đều cạnh a, điểm A' cách đều ba điểm A, B, c, cạnh bên AA' tạo với mặt phẳng đáy một góc 60°. a) Tính thể tích của khối lăng trụ đó. b) Chứng minh rằng mặt bên BCCB' là một hình chữ nhật. c) Tính tổng diện tích các mặt bên của hình lăng trụ ABC.A'B'C (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho).
- Bài học cùng chủ đề:
- Bài 21 trang 28 SGK Hình học 12 Nâng cao
- Bài 22 trang 28 SGK Hình học 12 Nâng cao
- Bài 24 trang 29 SKG Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 20. Cho khối lăng trụ tam giác \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\), điểm \(A'\) cách đều ba điểm \(A, B, C\), cạnh bên \(AA'\) tạo với mặt phẳng đáy một góc \(60^0\).
a) Tính thể tích của khối lăng trụ đó.
b) Chứng minh rằng mặt bên \(BCCB'\) là một hình chữ nhật.
c) Tính tổng diện tích các mặt bên của hình lăng trụ \(ABC.A'B'C\) (tổng đó gọi là diện tích xung quanh của hình (hoặc khối) lăng trụ đã cho).
Giải
a) Gọi \(O\) là tâm của tam giác đều \(ABC\). Vì \(A’\) cách đều ba đỉnh \(A, B, C\) nên \(A’\) nằm trên trục của \(\Delta ABC\), do đó \(A'O \bot mp\left( {ABC} \right)\)
\(AO\) là hình chiếu của \(AA’\) trên mp \((ABC)\). Do đó \(\widehat {A'AO} = {60^0}\)
Trong tam giác vuông \(A’OA\) ta có: \(\tan {60^0} = {{A'O} \over {AO}} \Rightarrow A'O = AO.\tan {60^0} = {2 \over 3}.{{a\sqrt 3 } \over 2}.\sqrt 3 = a\)
Vậy thể tích khối lăng trụ là \(V = B.h = {S_{ABC}}.A'O = {{{a^2}\sqrt 3 } \over 4}.a = {{{a^3}\sqrt 3 } \over 4}\)
b) Vì \(BC \bot AO \Rightarrow BC \bot \left( {AOA'} \right) \Rightarrow BC \bot AA'\) hay \(BC \bot BB'\) . Vậy \(BCC’B’\) là hình chữ nhật.
c) Gọi \(H\) là trung điểm của \(AB\). Ta có \(AB \bot \left( {A'HO} \right) \Rightarrow A'H \bot AB\).
Trong tam giác vuông \(A’OH\), ta có: \(A'{H^2} = A'{O^2} + O{H^2} = {a^2} + {\left( {{{a\sqrt 3 } \over 6}} \right)^2} = {{13{a^2}} \over {12}} \Rightarrow A'H = {{a\sqrt {13} } \over {2\sqrt 3 }}\)
Diện tích hình bình hành \(ABB’A’\) : \({S_{ABB'A'}} = AB.AH = {a^2}{{\sqrt {13} } \over {2\sqrt 3 }}\)
Tương tự \({S_{ACC'A'}} = {{{a^2}\sqrt {13} } \over {2\sqrt 3 }}\)
Diện tích hình chữ nhật \(BCC’B’\) là: \({S_{BCC'B'}} = BB'.BC = AA'.BC = {{AO} \over {\cos {{60}^0}}}.a = {{2{a^2}\sqrt 3 } \over 3}\)
Vậy diện tích xung quanh hình lăng trụ là: \({S_{xq}} = 2{S_{AA'B'B}} + {S_{BCC'B'}} = {{{a^2}\sqrt {13} } \over {\sqrt 3 }} + {{2{a^2}\sqrt 3 } \over 3} = {{{a^2}\sqrt 3 } \over 3}\left( {\sqrt {13} + 2} \right)\)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học