Giải bài 5 trang 31 SKG Hình học 12 Nâng cao
Cho khối lăng trụ đểu ABC.A'B'C’ và M là trung điểm của cạnh AB. Mặt phẳng (B'CM) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích hai phần đó.
- Bài học cùng chủ đề:
- Bài 6 trang 31 SGK Hình học 12 Nâng cao
- Ngữ pháp tiếng anh hay nhất
Bài 5. Cho khối lăng trụ đểu \(ABC.A'B'C’\) và \(M\) là trung điểm của cạnh \(AB\). Mặt phẳng \((B'CM)\) chia khối lăng trụ thành hai phần. Tính tỉ số thể tích hai phần đó.
Giải
Gọi \(I\) là giao điểm của đường thẳng \(B’M\) với \(AA’\); \(N\) là giao điểm của \(IC’\) với \(AC\). Khi đó \(A\) là trung điểm của \(A’I\) và \(N\) là trung điểm của \(AC\).
Đặt \({S_{ABC}} = S\) và \(AA' = h\)
Thiết diện của mp \((B’C’M)\) với khối lăng trụ \(ABC.A’B’C’\) là hình thang cân \(MNC’B’\). Mp \((B’C’M)\) chia khối lăng trụ thành hai phần, phần chứa cạnh \(AA’\) có thể tích là \({V_1}\), phần còn lại có thể tích là \({V_2}\). Khi đó ta có:
\(\eqalign{
& {V_1} = {V_{AMN.A'B'C'}} = {V_{I.A'B'C'}} - {V_{I.AMN}} = {1 \over 3}S.2h - {1 \over 3}.{S \over 4}h \cr
& = {2 \over 3}Sh - {1 \over {12}}Sh = {7 \over {12}}Sh = {7 \over {12}}\left( {{V_1} + {V_2}} \right) \cr
& \Rightarrow 12{V_1} = 7{V_1} + 7{V_2} \Rightarrow {{{V_1}} \over {{V_2}}} = {7 \over 5} \cr} \)
- Chương i. ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương ii. hàm số lũy thừa, hàm số mũ và hàm số lôgarit
- Chương iii. nguyên hàm, tích phân và ứng dụng
- Chương iv. số phức
- Ôn tập cuối năm đại số và giải tích
- Chương i. khối đa diện và thể tích của chúng
- Chương ii. mặt cầu, mặt trụ, mặt nón
- Chương iii. phương pháp tọa độ trong không gian
- Ôn tập cuối năm hình học