Giải bài 6 trang 31 SGK Hình học 12 Nâng cao

Cho khối chóp S.ABC cố đường cao S/4 bằng a, đáy là tam giác vuông cân có AB = BC = a. Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác SAC. a) Tính thể tích khối chóp S.ABC. b) Chứng minh rằng sc vuông góc với mp(AB'C'). c) Tính thể tích khối chóp S.AB’C’.

Bài 6. Cho khối chóp \(S.ABC\) có đường cao \(SA\) bằng \(a\), đáy là tam giác vuông cân có \(AB = BC = a\). Gọi \(B'\) là trung điểm của \(SB, C'\) là chân đường cao hạ từ \(A\) của tam giác \(SAC\).

a) Tính thể tích khối chóp \(S.ABC\).

b) Chứng minh rằng \(SC\) vuông góc với mp \((AB'C')\).

c) Tính thể tích khối chóp \(S.AB’C’\).

Giải

 

a) Thể tích khối chóp \(S.ABC\) là: \({V_{S.ABC}} = {1 \over 3}{S_{ABC}}.SA = {1 \over 6}{a^2}.a = {{{a^3}} \over 6}\)

b) Ta có \(BC \bot BA\) và \(BC \bot SA\) nên do đó \(AB' \bot BC\)

Ta có \(AB' \bot SB\) và \(AB' \bot BC\) nên \(AB' \bot SC\) (do \(AB' \bot \left( {SBC} \right)\) )

Theo giả thiết \(SC \bot AC'\), \(SC \bot AB'\) (chứng minh trên) \( \Rightarrow SC \bot \left( {AB'C'} \right)\)

c) Ta có \(AC’\) là đường cao trong tam giác vuông \(SAC\) nên \({{SC'} \over {SC}} = {{SC'.SC} \over {S{C^2}}} = {{S{A^2}} \over {S{C^2}}} = {{{a^2}} \over {3{a^2}}} = {1 \over 3}\)

Từ đó suy ra \({{{V_{S.AB'C'}}} \over {{V_{S.ABC}}}} = {{SA} \over {SA}}.{{SB'} \over {SB}}.{{SC'} \over {SC}} = {1 \over 2}.{1 \over 3} = {1 \over 6}\)

Vì \({V_{S.ABC}} = {{{a^3}} \over 6}\) nên \({V_{S.AB'C'}} = {{{a^3}} \over {36}}\)

Các bài học liên quan
Bài 4 trang 45 SGK Hình học 12 Nâng cao
Bài 5 trang 45 SGK Hình học 12 Nâng cao
Bài 6 trang 45 SGK Hình học 12 Nâng cao
Bài 7 trang 45 SGK Hình học 12 Nâng cao
Bài 8 trang 45 SGK Hình học 12 Nâng cao
Bài 9 trang 46 SGK Hình học 12 Nâng cao

Bài học nổi bật nhất

Đề thi lớp 12 mới cập nhật